
The Journal of Systems and Software 86 (2013) 377– 388

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Effective pattern-driven concurrency bug detection for operating systems

Shin Hong, Moonzoo Kim ∗

Computer Science Department, KAIST, South Korea

a r t i c l e i n f o

Article history:
Received 6 September 2011
Received in revised form 12 July 2012
Accepted 27 August 2012
Available online 25 September 2012

Keywords:
Concurrency bug
Bug pattern
Static analysis
Linux

a b s t r a c t

As multi-core hardware has become more popular, concurrent programming is being more widely
adopted in software. In particular, operating systems such as Linux utilize multi-threaded techniques
heavily to enhance performance. However, current analysis techniques and tools for validating concur-
rent programs often fail to detect concurrency bugs in operating systems (OSes) due to the complex
characteristics of OSes. To detect concurrency bugs in OSes in a practical manner, we have developed the
COncurrency Bug dETector (COBET) framework based on composite bug patterns augmented with seman-
tic conditions. The effectiveness, efficiency, and applicability of COBET were demonstrated by detecting
10 new bugs in file systems, device drivers, and network modules of Linux 2.6.30.4 as confirmed by the
Linux maintainers.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

As multi-core hardware becomes increasingly powerful and
popular, operating systems (OSes) such as Linux utilize the cutting-
edge multi-threaded techniques heavily to enhance performance.
However, current analysis techniques and tools for concurrent pro-
grams have limitations when they are applied to operating systems
due to the complex characteristics of OSes. In particular, the follow-
ing three characteristics of OSes make concurrency bug detection
on OSes difficult.

• Various synchronization mechanisms utilized
Most concurrency bug detection techniques (Choi et al., 2002;

Engler and Ashcraft, 2003; Naik et al., 2009; Raza and Vogel, 2008;
Savage et al., 1997; Voung et al., 2007) focus on lock usage, since a
majority of user-level applications utilize simple mutexes/critical
sections to enforce synchronization. However, OSes exploit var-
ious synchronization mechanisms (see Table 1) for performance
enhancement.

• Customized synchronization primitives
OS developers sometimes implement their own synchro-

nization primitives. Thus, concurrency bug detection tools for
standard synchronization mechanisms do not recognize these
customized synchronization primitives and produce imprecise
results (Xiong et al., 2010).

• High complexity of operating systems

∗ Corresponding author.
E-mail addresses: hongshin@kaist.ac.kr (S. Hong), moonzoo@cs.kaist.ac.kr

(M. Kim).

A dynamic analysis (i.e., testing) often fails to uncover hid-
den concurrency bugs due to the exponential number of possible
interleaving scenarios between threads in OSes. In addition,
replaying bugs is difficult, since it is hard to manipulate thread
schedulers in OSes directly. A static analysis, on the other hand,
has limited scalability to analyze OS code due to its high complex-
ity and complicated data structures. Furthermore, the monolithic
structure (i.e., tightly coupled large global data structure) of OSes
severely hinder modular analyses.

For these reasons, in spite of much research on concurrent bug
detection (see Section 6), such techniques have seldom been
applied to OS development in practice.

To alleviate the above difficulties, we have developed the
COncurrency Bug dETector (COBET) framework, which utilizes
composite bug patterns augmented with semantic conditions. Note
that concurrency errors are caused by unintended interference
between multiple threads. A salient contribution of COBET is that
it utilizes multiple sub-patterns, each of which represents a buggy
pattern in one thread, and checks semantic information that deter-
mines possible interferences between multiple threads in a precise
and scalable manner (see Section 3). In addition, since engineers
who use COBET can define various concurrency bug patterns in
a flexible manner, COBET can detect concurrency bugs that are
due to customized synchronization mechanisms or not targeted
by lock-based concurrency bug detection tools.

One drawback of COBET is that a user has to identify and define
bug patterns. To identify effective (i.e., detecting many bugs) and
precise (i.e., raising few false alarm) bug pattern requires user’s
domain knowledge on target code. In addition, it takes time to
concretely define bug patterns for identified bugs in a machine

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.08.063

dx.doi.org/10.1016/j.jss.2012.08.063
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:hongshin@kaist.ac.kr
mailto:moonzoo@cs.kaist.ac.kr
dx.doi.org/10.1016/j.jss.2012.08.063

378 S. Hong, M. Kim / The Journal of Systems and Software 86 (2013) 377– 388

Table 1
Statistics on the synchronization statements in the Linux kernel 2.6.30.4.

Atomic inst. Cond. var. Memory barrier Mutex rw sema-phore rw spin lock Sema-phore Spin lock Thread operation Total

of Stmt 8926 949 1926 14,902 2471 4248 759 44,205 460 78,846
Ratio 11.3% 1.2% 2.4% 18.9% 3.1% 5.4% 1.0% 56.1% 0.6% 100.0%

processable form. Without such effort, it is easy to define imprecise
bug patterns, which increases the burden to filter out false alarms
manually and, thus, decreases practical usefulness of the COBET
framework.1

However, once such bug patterns are well-defined, correspond-
ing pattern detectors can be implemented to detect concurrency
bugs in (1) subsequent releases of the target program, and/or (2)
other modules in a similar domain. It has been frequently observed
that although a given bug had been fixed previously, similar bugs
often appeared in the subsequent releases or in the different mod-
ules of the target program (see Sections 5.1 and 5.3). Thus, initial
efforts to define bug patterns could be sufficiently rewarded by
detecting concurrency bugs in rapidly evolving large software sys-
tems such as Linux. Furthermore, to lessen the effort to define bug
patterns and construct corresponding bug pattern detectors, the
COBET framework provides a pattern description language (PDL)
(see Section 3.2).

Currently, COBET provides four concurrency bug patterns that
are identified based on a review of Linux kernel ChangeLog docu-
ments. The effectiveness of COBET was demonstrated by detecting
10 new bugs in file systems, network modules, and device drivers
of Linux 2.6.30.4 (the latest Linux release at the moment of the
experiments), which were confirmed by Linux maintainers.

The contributions of this research are as follows:

• We have derived interesting observations on the Linux concur-
rency bugs from a review of the Linux ChangeLog documents on
Linux 2.6.x releases (Section 2).

• We have developed a pattern-based concurrency bug detection
framework, which can define and match various bug patterns. To
improve bug detection precision, our framework utilizes com-
posite patterns with semantic conditions in a scalable manner
(Section 3).

• Based on previous bug reports, we have defined four concurrency
bug patterns with various synchronization mechanisms, which
are effective to detect new bugs in Linux that are not targeted by
lock-based analysis techniques. (Sections 4 and 5).

The remainder of this paper is organized as follows. Section 2
describes the characteristics of Linux to show the advantages
of pattern-based bug detection approach on Linux. Section 3
overviews the COBET framework. Section 4 explains composite bug
patterns with semantic conditions upon the COBET framework.
Section 5 reports the evaluation of the COBET framework through
the empirical results on Linux kernel. Section 6 discusses related
work. Finally, Section 7 concludes the paper.

2. Characteristics of Linux operating system

In this section, we describe the characteristics of concurrent
programming practices used in Linux.

1 We have defined only four bug patterns (Section 4), since we had to learn domain
knowledge on Linux kernel from scratch in limited research time. However, if Linux
developers define bug patterns, they could build a database containing many effec-
tive and precise bug patterns in modest time. Since COBET is very fast to apply bug
patterns to large program code (see Tables 3–5), a large number of bug patterns may
not cause much overhead to detect concurrency bugs.

2.1. Synchronization mechanisms in Linux

Linux utilizes various synchronization mechanisms for
enhanced performance. We gathered statistics on the nine
standard synchronization mechanisms in the entire kernel code
of Linux 2.6.30.4, which consists of around 11.6 million lines of
C code. These nine synchronization mechanisms include atomic
instructions, conditional variables, memory barriers, mutexes,
read/write sema-phores, read/write spin locks, semaphores, spin
locks, and thread operations (e.g., thread creation and join). Those
synchronization mechanisms are identified in target code by the
name of the corresponding library function calls.

Table 1 shows the numbers of statements for the nine
synchronization mechanisms. Locks, the most popular synchro-
nization mechanism, can be implemented by using spin locks,
mutexes, and binary semaphores. Thus, locks take 75–76%
(=56.1% + 18.9% + 0–1.0%) of all synchronization statements in the
Linux kernel code. Consequently, 24–25% of synchronization state-
ments cannot be examined by lock-based bug detection techniques.

2.2. Survey of the Linux bug reports

We reviewed 324 ChangeLogs on Linux 2.6.0–2.6.30.3 to under-
stand the nature of real concurrency bugs (as Lu et al., 2008 did on
large application programs) and identified concurrency bug pat-
terns accordingly. We concentrated on the bug reports related to
Linux file systems for the following three reasons. First, file sys-
tems utilize heavy concurrency to handle multiple I/O transactions
simultaneously. Thus, we expected that file systems had many
concurrency issues. Second, there are relatively rich reference doc-
uments on the Linux file systems, so that it is easy to understand
the bug reports and define bug patterns. Third, as Linux file system
consists of multiple naive file systems such as nfs and ext4 whose
overall functionalities are similar, we expected that we could find
a concurrency bug that occurred commonly in multiple naive file
systems, which can be a good candidate for a bug pattern to define.

We collected the concurrency bug reports on the Linux file sys-
tems by searching related keywords (i.e., ‘lock’, ‘concurrency’, ‘data
races’, ‘deadlock’, etc.) as well as manual inspection. Finally, we
found 50 concurrency bug reports on the Linux file systems and 27
of them were selected for in-depth review (the remaining 23 bugs
were discarded, since these bugs were caused by domain-specific
requirement violations or could not be understood concretely).
Through the review, we made the following observations:

Observation 1: Half of the concurrency bugs are involved with
synchronization mechanisms other than locks. 12 of the 27 bugs were
associated with synchronization mechanisms other than locks (i.e.,
atomic instructions, memory barriers, thread operations, etc.). In
addition, locks were sometimes used in a non-standard manner
(e.g., recursive locking and releasing on blocking). This observa-
tion indicates that we need customizable/flexible concurrency bug
detection tools that can analyze various synchronization mecha-
nisms, not only standard lock usages.

Observation 2: Code review was more effective to detect concur-
rency bugs than runtime testing was. Linux ChangeLogs reported
that, among the 27 concurrency bugs, nine were detected by actual
testing and 13 bugs detected by manual code review (the sources
of the remaining five bugs were not clear). In general, code review
does not reason with concrete input data and scheduling, but by

Download English Version:

https://daneshyari.com/en/article/10342518

Download Persian Version:

https://daneshyari.com/article/10342518

Daneshyari.com

https://daneshyari.com/en/article/10342518
https://daneshyari.com/article/10342518
https://daneshyari.com

