
On don’t cares in test compression

Jiří Balcárek, Petr Fišer ⇑, Jan Schmidt
Dept. of Digital Design, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic

a r t i c l e i n f o

Article history:
Received 3 December 2013
Revised 16 May 2014
Accepted 22 July 2014
Available online xxxx

Keywords:
ATPG
Test don’t cares
Satisfiability
Symbolic simulation
Test compression
Embedded cores

a b s t r a c t

Both test compression tools and ATPGs directly producing compressed test greatly benefit from don’t care
values present in the test. Actually, presence of these don’t cares is essential for success of the compres-
sion. Contemporary ATPGs produce tests having more than 97% of don’t cares for large industrial circuits,
thus high compression ratios can be expected. However, these don’t cares are placed in the test in an
‘‘uninformed’’ way. There are many possibilities of constructing a complete test for a circuit, while the
ATPG chooses just one particular, without respect to the subsequent compression process. Therefore,
the don’t cares cannot be fully exploited. In this paper we show how severe this issue is. A novel ATPG
algorithm directly producing compressed test patterns for the RESPIN decompression architecture is pre-
sented. Test don’t cares are placed in an informed way, so that they are maximally exploited by compres-
sion. We compare the results with several ways of uninformed don’t care generation to show the benefits
of the proposed method. Results for the ISCAS and ITC’99 benchmark circuits are shown and compared to
state-of-the-art test compression techniques.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

As the complexity of integrated circuits and systems continually
increases, their testing becomes more and more difficult. The test
data volume increases with the circuit size, making the test storing
and application unfeasibly memory- and time-consuming. There-
fore, using some kind of test compression becomes inevitable.
According to the ITRS roadmap [1], the required test data volume
compression reaches tremendous ratios: 2700-times in 2015 and
almost 50,000-times in 2028.

The compression (and subsequent decompression) can be
accomplished by several means. The test compression is performed
algorithmically, whereas the decompression always involves some
additional hardware. Basically, there are three major approaches:

1. A non-compressed test is generated by a conventional Auto-
matic Test Pattern Generation tool (ATPG) and then it is algo-
rithmically compressed. The decompression is then performed
by a special dedicated non-intrusive hardware, usually a kind of
FSM. This approach comprises Huffman encoding based algo-
rithms [2], Golomb codes [3], statistical (FDR) codes [4], but also

the well-known LFSR reseeding [5,6] to some extent, and the
Embedded Deterministic Test (EDT) technique [7], which is
now the industrial state-of-the-art.

2. Generic design-for-testability (DFT) architectures are used for test
decompression, while the test generation process still relies on
a conventional ATPG. Random access scan [8,9], Illinois scan [10]
and RESPIN-based [11–13] architectures belong to this cate-
gory, together with rather theoretical papers with no particular
architecture proposed [14].

3. Dedicated ATPGs are used to generate test for generic or dedi-
cated architectures. Such an approach theoretically offers the
highest possible compression ratio. The algorithm has the high-
est flexibility, since the compressed test generation is not per-
formed in two subsequent and separated phases. Methods
presented in [15–17] are typical representatives. Here the ATPG
is constrained or modified, so that the compressed test stream
for the target architecture is generated directly. This is also
the approach we have adopted in this paper.

As for ATPGs, there are two major baselines: circuit-based
ATPGs [18–21] and approaches transforming the ATPG problem
to the satisfiability (CNF-SAT) problem [22,23]. Modern ATPGs
then combine benefits of both, mostly by introducing structural
information to help the SAT-solver compute the solution faster
[24–26].

Current ATPGs are able to produce tests containing unspecified
values – we call them test don’t cares. The test vectors (patterns) that

http://dx.doi.org/10.1016/j.micpro.2014.07.006
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Address: Dept. of Computer Science & Engineering,
Czech Technical University in Prague, FIT, Thákurova 9, CZ-160 00 Prague 6, Czech
Republic. Tel.: +420 22435 9842; fax: +420 22435 9819.

E-mail addresses: jiri.balcarek@fit.cvut.cz (J. Balcárek), petr.fiser@fit.cvut.cz
(P. Fišer), jan.schmidt@fit.cvut.cz (J. Schmidt).

Microprocessors and Microsystems xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

Please cite this article in press as: J. Balcárek et al., On don’t cares in test compression, Microprocess. Microsyst. (2014), http://dx.doi.org/10.1016/
j.micpro.2014.07.006

http://dx.doi.org/10.1016/j.micpro.2014.07.006
mailto:jiri.balcarek@fit.cvut.cz
mailto:petr.fiser@fit.cvut.cz
mailto:jan.schmidt@fit.cvut.cz
http://dx.doi.org/10.1016/j.micpro.2014.07.006
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro
http://dx.doi.org/10.1016/j.micpro.2014.07.006
http://dx.doi.org/10.1016/j.micpro.2014.07.006


could be incompletely specified are then referred to as test cubes.
Don’t cares can be efficiently used in the test compression process,
since they introduce a kind of flexibility, as any value can be
assigned to them. However, there are many ways of forming a
(complete) test. The following two aspects must be accounted for:

1. Usually every single fault can be detected by many different test
vectors (test patterns). Moreover, a complete set of such vectors
usually cannot be described by a single test cube.

2. Test compaction [27,28] performed by ATPG tools, merging test
cubes to reduce the test size, can be executed in different ways.
Actually, it is an NP-hard process [22] and heuristics are used in
practice.

As a result, the don’t cares are placed in the test randomly, from
the point of view of their subsequent usage. Even though the
amount of test don’t cares typically reaches very high values (more
than 97% for industrial designs [7]), still even more flexibility could
be exploited by compression. In other words, the test compression
process is provided a single set of test cubes only, out of numerous
possibilities. There is no guarantee that the compression would not
perform better, when given a different test set.

In this paper we show how severe this issue is. We present a
SAT-based ATPG producing a compressed test directly. The test
cube generation is driven by the compression process, so that most
suitable test cubes are used. Naturally, don’t cares in test patterns
are beneficial for the compression. To obtain these don’t cares we
propose a method of generating test don’t cares in an informed
way. Then we compare the results with methods where don’t cares
are obtained in an uninformed way, to show the benefits of the for-
mer one.

Note that the terms ‘‘informed’’ and ‘‘uninformed’’ used
throughout this paper come from the concept of informed and
uninformed local search heuristics. The informed methods use
some additional information to properly guide the neighborhood
exploration. Here, the neighborhood are incompletely specified
test patterns, and the heuristic function is the number of faults
covered by them.

We extend the SAT-Compress algorithm [16,17] by injection of
‘‘don’t cares’’ into test patterns. The SAT-Compress ATPG algorithm
generates the compressed test stream by constraining a conven-
tional SAT-based ATPG. Conventional SAT solvers [29,30] used as
the vital part of most of SAT-based ATPG tools produce completely
specified solutions, where all variables have a specified value in the
satisfying solution. There are several ways of introducing don’t
cares (unspecified variables) into the SAT solution. First, there are
SAT-solvers producing incompletely specified solutions directly
[31–34]. Here satisfying solutions comprised of minimum literals
(minimal models, prime implicants) are generated. However, the
optimization criterion is computed over all variables, which is
unsuitable for our application, where values of only some variables
are of interest.

Next, optimization version of SAT can be transformed to Integer
Linear Programming (ILP) [35]. Here the optimization criterion can
be modified for our purposes, so that only some variables are
accounted in its computation. In this paper we propose a similar
method, particularly the conversion of the SAT problem minimiz-
ing the number of specified variables in the satisfying solution to
Pseudo-Boolean Optimization (PBO) [36].

Finally, don’t cares can be injected into a completely specified
vector obtained from a conventional SAT solver [29,30], while the
coverage is checked by symbolic fault simulation. When fault sim-
ulation is performed, we get additional information on the
obtained test cube – its fault coverage [38]. Then we can, e.g., inject
don’t cares while respecting the fault coverage. This is the
informed way of obtaining test don’t cares proposed in this paper.

We compare this simulation-based method with the uninformed
ones and show its benefits in test compression, in terms of both
the compressed test stream size and test compression time.

The paper is organized as follows: the target architecture and
basic principles of the studied compression algorithms are shown
in Section 2. Possibilities of obtaining don’t cares in the SAT-Com-
press process are described in Section 3, Section 4 presents exper-
imental results, to show the role of don’t cares in test compression
and to illustrate the benefits of informed don’t care injection. Sec-
tion 5 concludes the paper.

2. The decompression architecture and compression algorithms

2.1. The RESPIN architecture

The SAT-Compress algorithm [16,17] and also its enhancements
proposed in this paper and [38] are based on the RESPIN architec-
ture [11], which is targeted to System-on-Chip (SoC) designs com-
pliant with the IEEE Std. 1500 [39,40]. Only a very small
modification of IEEE Std. 1500 (addition of one multiplexer) can
accomplish the test decompression job.

The basic idea of RESPIN is illustrated in Fig. 1. Multiple embed-
ded cores are considered here. To test one core (CUT – Core under
Test), the test decompression is performed by another core (ETC –
Embedded Tester Core).

RESPIN uses two features of IEEE Std. 1500 – the serial and par-
allel test access modes. The compressed test bitstream serially
enters the ETC, which is configured as a shift-register. Then the
decompressed data is applied to the CUT, which is tested in the
parallel scan-chain mode.

The ETC is provided with a multiplexer, enabling rotation of the
pattern. Thereby, if no data come from the external test equipment
(ATE), no information on the stored pattern is lost. This opens a
simple way to compression: when the deterministic non-com-
pressed test patterns overlap when rotated by p bits, each test pat-
tern to be applied to the CUT involves only p bits coming from the
ATE. Actually, rotation needs not be used in practice. Typically, one
bit comes from ATE in each cycle (p = 1), while the remaining bits
of the pattern are formed by shifting the previous pattern by one
bit. This approach eliminates the need for any control data pro-
vided by ATE. For details see [11].

2.2. Patterns overlapping based approaches

An illustrative example of an overlapping-based compression is
shown in Fig. 2. Here the non-compressed test length equals to the
number of patterns multiplied by the number of CUT scan-chain

Fig. 1. RESPIN architecture [11].

2 J. Balcárek et al. / Microprocessors and Microsystems xxx (2014) xxx–xxx

Please cite this article in press as: J. Balcárek et al., On don’t cares in test compression, Microprocess. Microsyst. (2014), http://dx.doi.org/10.1016/
j.micpro.2014.07.006

http://dx.doi.org/10.1016/j.micpro.2014.07.006
http://dx.doi.org/10.1016/j.micpro.2014.07.006


Download English Version:

https://daneshyari.com/en/article/10343010

Download Persian Version:

https://daneshyari.com/article/10343010

Daneshyari.com

https://daneshyari.com/en/article/10343010
https://daneshyari.com/article/10343010
https://daneshyari.com

