
Parallel distributed scalable runtime address generation scheme for a
coarse grain reconfigurable computation and storage fabric

Nasim Farahini a,⇑, Ahmed Hemani a, Hassan Sohofi a, Syed M.A.H. Jafri a, Muhammad Adeel Tajammul a,
Kolin Paul b

a Royal Institute of Technology, KTH, Sweden
b Indian Institute of Technology Delhi, India

a r t i c l e i n f o

Article history:
Received 24 December 2013
Revised 12 May 2014
Accepted 23 May 2014
Available online 11 June 2014

Keywords:
Streaming address generation
CGRA
Parallel distributed DSP
Code compaction

a b s t r a c t

This paper presents a hardware based solution for a scalable runtime address generation scheme for DSP
applications mapped to a parallel distributed coarse grain reconfigurable computation and storage fabric.
The scheme can also deal with non-affine functions of multiple variables that typically correspond to
multiple nested loops. The key innovation is the judicious use of two categories of address generation
resources. The first category of resource is the low cost AGU that generates addresses for given address
bounds for affine functions of up to two variables. Such low cost AGUs are distributed and associated with
every read/write port in the distributed memory architecture. The second category of resource is
relatively more complex but is also distributed but shared among a few storage units and is capable of
handling more complex address generation requirements like dynamic computation of address bounds
that are then used to configure the AGUs, transformation of non-affine functions to affine function by
computing the affine factor outside the loop, etc. The runtime computation of the address constraints
results in negligibly small overhead in latency, area and energy while it provides substantial reduction
in program storage, reconfiguration agility and energy compared to the prevalent pre-computation of
address constraints. The efficacy of the proposed method has been validated against the prevalent
address generation schemes for a set of six realistic DSP functions. Compared to the pre-computation
method, the proposed solution achieved 75% average code compaction and compared to the centralized
runtime address generation scheme, the proposed solution achieved 32.7% average performance
improvement.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Address generation is a dominant factor in the latency, area and
energy cost of the DSP applications and other scientific applica-
tions dominated by vector processing; it can be as high as 70% in
applications like image processing after loop transformations and
memory hierarchy optimizations [1]. Parallel distributed coarse
grain reconfigurable fabrics are emerging as promising architec-
tural solutions that provides hardware like efficiency while retain-
ing the benefits of programmability. However, the main focus of
research in this field has been to speed up the functional computa-
tion with the efficiency of address generation receiving some but
less than deserved attention [2–4]. We argue that the overall

computational and silicon efficiency benefits of the hardware like
parallel distributed solutions would be diluted unless these
solutions also provide a matching parallel distributed address gen-
eration scheme. Providing such a scheme for a coarse grain recon-
figurable computation and storage fabric is the focus of this paper.

Addresses in DSP applications are almost always functions of
loop indices that in turn are constrained by the loop bounds. Loop
bounds can themselves be compile time static or be functions of
other loop indices and bounds. Further, these functions for
addresses and loop bounds can be affine or non-affine. To meet
these address generation requirements DSP architects have
adopted two broad categories of solutions, as shown in Fig. 1.

One is to pre-compute the addresses and the loop bounds at
compile time; this solution is also known as loop unrolling and
has been employed by many coarse grain reconfigurable architec-
tures [5,6]. Note that in this context, loop unrolling is mentioned as
a technique to pre-compute the addresses and address bounds in
each instance of the unravelled loop and not the technique used

http://dx.doi.org/10.1016/j.micpro.2014.05.009
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: farahini@kth.se (N. Farahini), hemani@kth.se (A. Hemani),

sohofi@kth.se (H. Sohofi), jafri@kth.se (S.M.A.H. Jafri), tajammul@kth.se
(M.A. Tajammul), kolin.paul@gmail.com (K. Paul).

Microprocessors and Microsystems 38 (2014) 788–802

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.05.009&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.05.009
mailto:farahini@kth.se
mailto:hemani@kth.se
mailto:sohofi@kth.se
mailto:jafri@kth.se
mailto:tajammul@kth.se
mailto:kolin.paul@gmail.com
http://dx.doi.org/10.1016/j.micpro.2014.05.009
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

in the compiler optimization context where it is used to increase
parallelism and utilization. This solution does not scale in space,
as the storage required would increase with the outer loop bounds
and the level of loop nesting. This is especially problematic for true
parallel distributed solutions where not just the computation but
also the control is distributed. Distributed control implies distrib-
uted program storage and if each such program storage unit needs
to be dimensioned to cope with loop unrolled program, the overall
cost of program storage would be unreasonably high [7].

The second solution is to compute addresses and loop bounds at
runtime. Address Generation Units (AGUs) embedded with the
storage units have long been used in DSP systems [8] but are often
restricted to one or two dimensional affine addressing. AGUs are
programmed with the loop bounds that are computed by the main
computation unit. In another variant of address generation used in
modern VLIWs, some ALUs (issues) are reserved for address and
loop bound computation, working as a complement to the AGUs
[9].

The problem with this approach is that the state machines for
functional, address and loop bound computation may not be com-
patible and would result in large number of stalls and degrade the
IPC (Instruction per Cycle) as addressed in [10]. Yet another variant
to the runtime computation of addresses and loop bounds that is
commonly adopted by the software centric solutions that rely on
accelerators to speed up one or more inner loops is to centrally
compute the loop bounds and/or addresses by the software proces-
sor and distribute them to the accelerators [11,12]. This approach
is also not scalable as the centralized computation of multiple
address and loop bounds can potentially become a bottleneck,
especially when the ambition is to not just accelerate a few inner
loops but to map the complete DSP sub-system to a parallel
distributed coarse grain reconfigurable fabric; in essence, the
entire DSP sub-system, a modem or a codec, becomes an accelera-
tor controlled by a system controller.

The address and loop bound computation scheme proposed in
this paper is based on runtime and distributed computation, thus
avoiding the space scalability problem of the pre-computation
approach and the latency scalability problem of the centralized
computing. Secondly, the proposed scheme is general and not
restricted to affine functions. Lastly, the address and loop bounds
computation is an independent thread that does not get entangled
with the functional computation thread, thus avoiding the problem
of stalls and IPC degradation observed in VLIWs.

The runtime nature of the address generation scheme serves as
a code compaction mechanism compared to the pre-computation
or the loop unrolling method. This benefit is amplified by the dis-
tributed nature of the scheme that minimizes the energy required
to move address between the address computation unit(s) where it
is generated and the storage units where it is consumed. As the

proposed scheme targets a coarse grain reconfigurable fabric, the
code compaction also enables agile and low power parallel distrib-
uted reconfiguration. The coarse grain reconfigurable fabric has an
adaptive power management scheme where the degree of parallel-
ism of an algorithm is decided at runtime depending on the
deadlines and the resources available. For this scheme to be
effective it is essential for the reconfiguration to be agile and low
power and the proposed scheme makes a difference as we
demonstrate and quantify it in Section 6.

The rest of the paper is organized as follows. In Section 2, we
review the state of the art in address generation scheme and relate
it to the proposed scheme. This is followed by Section 3 where we
introduce the terminology and the core idea at an abstract level to
emphasize the generality of both the requirement and the pro-
posed solution. Section 4 presents the specific Coarse Grain Recon-
figurable computation and storage fabric that has been enhanced
with the proposed runtime address generation scheme. Section 5
elaborates the proposed scheme by first presenting the details of
the Runtime Address Constraints Computation Unit (RACCU) fol-
lowed by the strategy to map address generation requirements
between AGUs and RACCUs. This section ends with a concrete
example of how an application is mapped to the enhanced address
generation scheme and its working and timing explained in terms
of pseudo assembly code. In Section 6, we validate the efficacy of
the proposed scheme by comparing it against the pre-computation
approach and the centralized runtime address generation scheme.
We also do cost benefit analysis in this section. Lastly, we summa-
rize and draw conclusions.

2. Related work

DSP architects have long recognized the benefits of dedicated
hardware resources called AGU (Address Generation Unit) for gen-
erating addresses as elaborated in Dake Liu’s textbook on the topic
[32]. AGUs work in parallel with the main computational unit
involved in functional computation. Talavera et al. [36] have com-
prehensively classified the address generation requirements and
hardware. Commercial DSPs like TI TMS320C55x [13] and AT&T
16xx [34] have AGUs that supports commonly used DSP addressing
modes like bit-reverse addressing, circular buffer etc. These com-
mercial DSPs also support what is known as zero overhead loops
with the auto-increment/decrement features connected to the
address generation hardware. To go beyond the standard address
generation schemes, e.g., with non-affine or non-linear functions
or compute address bounds dynamically these DSPs that are typi-
cally VLIWs adopt one of the three following strategies. One is to
pre-compute or unroll the loop. The pre-computation/loop unroll-
ing strategy, as argued before does not scale in space. The second

Address Genera�on Schemes for DSP Systems

Run�me Computa�on Pre-Computa�on / Loop Unrolling
Does not scale in storage capacity

Centralized
 a. Does not scale in �me
 b. The address genera�on thread

and the func�onal computa�on
threads get entangled resul�ng in
excessive stalls and degraded IPC

Distributed

Restricted
 a. Cannot deal with arbitrary

func�ons, e.g., non-affine func�ons
 b. Cannot deal with func�on of more

than two independent variables

Generalized
Proposed Solu�on

Fig. 1. Categories of Address Generation Schemes.

N. Farahini et al. / Microprocessors and Microsystems 38 (2014) 788–802 789

Download English Version:

https://daneshyari.com/en/article/10343016

Download Persian Version:

https://daneshyari.com/article/10343016

Daneshyari.com

https://daneshyari.com/en/article/10343016
https://daneshyari.com/article/10343016
https://daneshyari.com

