
Computers and Mathematics with Applications 69 (2015) 1232–1241

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On the identification of symmetric quadrature rules for finite
element methods
F.D. Witherden ∗, P.E. Vincent
Department of Aeronautics, Imperial College London, SW7 2AZ, United Kingdom

a r t i c l e i n f o

Article history:
Received 5 September 2014
Received in revised form 28 January 2015
Accepted 8 March 2015
Available online 2 April 2015

Keywords:
Numerical integration
Gaussian quadrature
Finite elements
Cubature

a b s t r a c t

In this paper we describe a methodology for the identification of symmetric quadrature
rules inside of quadrilaterals, triangles, tetrahedra, prisms, pyramids, and hexahedra. The
methodology is free from manual intervention and is capable of identifying a set of rules
with a given strength and a given number of points. We also present polyquad which is an
implementation of ourmethodology. Using polyquad v1.0we proceed to derive a complete
set of symmetric rules on the aforementioned domains. All rules possess purely positive
weights and have all points inside the domain. Many of the rules appear to be new, and an
improvement over those tabulated in the literature.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When using the finite element method to solve a system of partial differential equations it is often necessary to evaluate
surface and volume integrals inside of a standardised domain � [1–3]. A popular numerical integration technique is that of
Gaussian quadrature in which

�

f (x) dx ≈
Np
i

ωif (xi), (1)

where f (x) is the function to be integrated, {xi} are a set of Np points, and {ωi} the set of associated weights. The points
and weights are said to define a quadrature rule. A rule is said to be of strength φ if it is capable of exactly integrating any
polynomial of maximal degree φ over �. A degree φ polynomial p(x)with x ∈ � can be expressed as a linear combination
of basis polynomials

p(x) =
|Pφ
|

i

αiP
φ

i (x), αi =


�

p(x)P φ

i (x) dx, (2)

where P φ is the set of basis polynomials of degree≤ φ whose cardinality is given by |P φ
|. From the linearity of integration

it therefore follows that a strength φ quadrature rule is one which can exactly integrate the basis. Taking f ∈ P φ the task
of obtaining an Np point quadrature rule of strength φ is hence reduced to finding a solution to a system of |P φ

| nonlinear
equations. This system can be seen to possess (ND + 1)Np degrees of freedom where ND ≥ 2 corresponds to the number of
spatial dimensions.
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In the case of Np . 10 the above system can often be solved analytically using a computer algebra package. However,
beyond this it is usually necessary to solve the above system– or a simplification thereof – numerically.Much of the research
into multidimensional quadrature over the past five decades has been directed towards the development of such numerical
methods. The traditional objective when constructing quadrature rules is to obtain a rule of strength φ inside of a domain
� using the fewest number of points. To this end efficient quadrature rules have been derived for a variety of domains:
triangles [4–13], quadrilaterals [11,14,15], tetrahedra [7,9,16,17], prisms [18], pyramids [19], and hexahedra [11,20–22].
For finite element applications it is desirable that (i) points are arranged symmetrically inside of the domain, (ii) all of the
points are strictly inside of the domain, and (iii) all of the weights are positive. The consideration given to these criteria in
the literature cited above depends strongly on the intended field of application—not all rules are derivedwith finite element
methods in mind.

Much of the existing literature is predicated on the assumption that the integrand sits in the space of P φ . Under this
assumption there is little, other than the criteria listed above, to distinguish twoNp rules of strength φ; both can be expected
to compute the integral exactlywith the samenumber of functional evaluations. It is therefore commonpractice to terminate
the rule discovery process as soon as a rule is found. However, there are cases when either the integrand is inherently non-
polynomial in nature, e.g. the quotient of two polynomials, or of a high degree, e.g. a polynomial raised to a high power. In
these circumstances the above assumption no longer holds and it is necessary to consider the truncation term associated
with each rule. Hence, within this context it is no longer clear that the traditional objective of minimising the number of
points required to obtain a rule of given strength is suitable: it is possible that the addition of an extra point will permit the
integration of several of the basis functions of degree φ + 1.

Over the past five or so years there has also been an increased interest in numerical schemeswhere the same set of points
are used for both integration and interpolation. One example of such a scheme is the flux reconstruction (FR) approach
introduced by Huynh [23]. In the FR approach there is a need for quadrature rules that (i) are symmetric, (ii) remain strictly
inside of the domain, (iii) have a prescribed number of points, and (iv) are associated with a well conditioned nodal basis for
polynomial interpolation. These last two requirements excludemany of the points tabulated in the literature. Consequently,
there is a need for bespoke or designer quadrature rules with non-standard properties.

This paper describes amethodology for the derivation of symmetric quadrature rules inside of a variety of computational
domains. The method accepts both the number of points and the desired quadrature strength as free parameters and – if
successful – yields a set of rules. Traits, such as the positivity of theweights, can then be assessed and rules binned according
to their suitability for various applications. The remainder of this paper is structured as follows. In Section 2we introduce the
six reference domains and enumerate their symmetries. Ourmethodology is presented in Section 3. Based on the approach of
Witherden and Vincent [12] themethodology requires nomanual intervention and avoids issues relating to ill-conditioning.
In Section 4 we proceed to describe our open-source implementation, polyquad. Using polyquad a variety of truncation-
optimised rules, many of which appear to improve over those tabulated in the literature, are obtained and presented in
Section 5. Finally, conclusions are drawn in Section 6.

2. Bases, symmetries, and domains

2.1. Basis polynomials

The defining property of a quadrature rule for a domain � is its ability to exactly integrate the set of basis polynomials,
P φ . This set has an infinite number of representations the simplest of which being the monomials. In two dimensions we
can express the monomials as

P φ
=

xiyj | 0 ≤ i ≤ φ, 0 ≤ j ≤ φ − i


, (3)

where φ is the maximal degree. Unfortunately, at higher degrees the monomials become extremely sensitive to small
perturbations in the inputs. This gives rise to polynomial systems which are poorly conditioned and hence difficult to solve
numerically [9,16]. A solution to this is to switch to an orthonormal basis set defined in two dimensions as

P φ
=

ψij(x) | 0 ≤ i ≤ φ, 0 ≤ j ≤ φ − i


, (4)

where x = (x, y)T and ψij(x) satisfies ∀µ, ν
�

ψij(x)ψµν(x) dx = δiµδjν, (5)

where δiµ is the Kronecker delta. In addition to being exceptionally well conditioned orthonormal polynomial bases have
other useful properties. Taking the constant mode of the basis to be ψ00(x) = 1/c we see that

�

ψij(x) dx = c


�

ψ00(x)ψij(x) dx = cδi0δj0, (6)



Download English Version:

https://daneshyari.com/en/article/10346098

Download Persian Version:

https://daneshyari.com/article/10346098

Daneshyari.com

https://daneshyari.com/en/article/10346098
https://daneshyari.com/article/10346098
https://daneshyari.com

