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a b s t r a c t

Multi-criteria optimization problems are considered where the decision maker is unable to determine

the exact weights of importance of the criteria but can provide some imprecise information about these

weights. Two solution concepts are studied in this framework: the optimistic min–max solution and the

compromise utilitarian solution, both of which can be exactly computed for linear problems. For general

problems, it is shown that these solutions can be approximated by means of a slight modification of the

evolutionary algorithm NSGA-II.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Egalitarianism and utilitarianism are two axiomatic principles
which represent the preferences of the decision maker (DM),
upon which many approaches to multi-criteria optimization
problems (MOPs) are based. When using an additive value
function that involves all the criteria scores for the selection of
a decision, a utilitarian principle is being applied, whereas
egalitarianism is the motivation for the use of min–max solutions
(see [16]). In both cases, the weights of importance of the criteria
play a leading role.

Very often the DM may be doubtful when setting precise values
for criteria weights. In the model presented in this paper, impreci-
sion on criteria weights is allowed and the information about these
weights is formalized by means of linear constraints. Thus, a
polyhedron of weights of importance of the criteria is considered
instead of a single vector of weights. This kind of information is
often designated as incomplete, imprecise or partial information.

Previous related studies on the various treatments of MOPs
with partial information are fundamentally concerned with the
reduction of the set of Pareto-optimal solutions according to the
available information (see for example [2,12,18]). There are also
certain results on multi-criteria linear problems in which the
coefficients of the objective function are not precisely defined, but
are given by intervals or by linear relations (see [11,9,19,20]).
Most of these approaches focus on the analysis of the sensitivity

of a solution given feasible changes in the parameters. In a
different way, in [10], the solutions of multi-objective decision
problems with partial information are studied when the DM’s
preferences are represented by utilitarian or egalitarian functions
and the rationality principles that sustain them are analyzed.

In this paper, we investigate the solutions which arise when the
DM’s preferences are represented by utilitarian and egalitarian
value functions in the context of partial information. Since the
straightforward extensions of the utilitarian and the min–max
solutions generally produce too many Pareto-optimal outcomes,
we propose further refinements in order to obtain solutions that
permit the decision making process to be completed. By using an
egalitarian principle, one of these possible refinements may consist
of simply choosing the maximal of the polyhedron of weights
of importance of the criteria and of considering the outcomes
provided by the weighted min–max solution. Throughout the
paper, these outcomes are called the optimistic min–max solutions

(OMS).1 Since the OMS takes egalitarianism to an extreme and there
are situations where the egalitarian principle is inappropriate in the
choice of the solutions (see Fig. 3 in Section 3.2), in this paper
compromise outcomes are proposed between the OMS and the
outcomes arising from the corresponding utilitarian solution. We
call the outcomes arising from this compromise the compromise

utilitarian solutions (CUS).
Although the CUS and the OMS can easily be computed for

multi-criteria continuous linear problems, they are difficult to
compute in general. Nevertheless, we show how evolutionary
multi-objective optimization (EMO) algorithms can successfully
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approximate these solutions. The success of the procedure is due:
to the ability of EMO algorithms to quickly solve multi-objective
problems (or compute a good approximation of the solution set);
to their robustness (although they are stochastic processes); and
to their flexibility to manage constraints that represent the
preferences of the DM. In addition, the use of an EMO algorithm
instead of a single-objective evolutionary algorithm is justified as
follows: on the one hand, according to the uniqueness of the CUS
and of the OMS (see Example 3.8), the use of an EMO algorithm
allows practitioners to manage problems not knowing in advance
if they have an unique or multiple solutions; on the other hand,
EMO algorithms maintain a more diverse population and usually
obtaining higher quality solutions.

Evolutionary multi-objective optimization algorithms were ori-
ginally proposed to solve hard multi-objective optimization pro-
blems. Since in only one run they generate the true Pareto front (or a
good approximation), they have been successfully employed in
recent decades to solve real complex problems in a variety of
research fields, such as engineering, biology, business, and telecom-
munications (see [4], [5]). Nevertheless, EMO algorithms present
many other good properties that make them suitable to modify, for
example, the search process of the algorithm and guide the popula-
tion towards those preferred areas in the true Pareto front when a
priori information is provided. To this end, several attempts have
been made according to the kind of partial information available.

In [1], an excellent review of this topic is given through the
classification of the approaches into several categories: when the
articulation of the DM’s preferences is carried out before (a priori),
during (progressive), or after (a posteriori) the search. Other recent
contributions related to this topic include: [14] where the partial
information is provided as a (feasible or unfeasible) reference point
to follow; [8] where the authors use a binary fuzzy preference
relation; and [17] where a new set of decision rules is employed to
obtain values for the scaling weights in each function.

The rest of the paper is organized as follows. In Section 2 the
model is formalized, in Section 3 the notions of optimistic min-max
solution and compromise utilitarian solution is introduced. Finally,
Section 4 is devoted to show how an EMO algorithm (the NSGA-II is
adopted in this work) can be modified in order to obtain a good
approximation of the CUS (OMS) and some computational results
are provided which validate this approximation.

2. The model

A multi-criteria optimization problem (MOP) with s criteria
can be formally defined as

min f ðxÞ ¼ ½f 1ðxÞ, . . . ,f sðxÞ�

s:t: : xAX

and represented by the pair (X,f), where XDRn is the feasible set in
the decision space, each xAX is an n-dimensional vector of decision

variables, and f : Rn-Rs is a vector-valued function, whose s

components, f 1ðxÞ, . . . ,f sðxÞ, are s scalar functions of the decision
vector x which represent the criteria that have to be taken into
account to evaluate each feasible decision.2 Without loss of general-
ity, we suppose that all the objectives are to be minimized.

Pareto optimality is a basic requirement in MOPs:

Defnition 2.1. A feasible solution xnAX is Pareto optimal (or
efficient) if there is no other feasible solution, xAX, such that
f iðxÞr f iðx

nÞ for all i¼ 1,2, . . . ,s and f ðxÞa f ðxnÞ. A feasible solution
xnAX is weakly Pareto optimal (or weakly efficient) if there is no
xAX such that f iðxÞo f iðx

nÞ for all i¼ 1,2, . . . ,s.

Given a MOP, (X, f), the Pareto optimal (weakly Pareto optimal)
solution set is denoted by PO(X, f), (WPO(X, f)).

Various procedures exist for the generation of efficient solu-
tions and their selection depends on whether one is interested
in generating one (or a few) Pareto optimal solution(s) or
the complete (or a good approximation of the) Pareto frontier.
In the former case, classic methods, which are focused on
reducing the number of objective functions into a single auxiliary
objective function, have been successfully applied over recent
decades, and include the weighted sum method, E-constraints,
weighted metric methods, compromise programming, goal pro-
gramming methods and many others (see [3,21,13]). In the latter
case, the most extended approaches to generate the complete
Pareto front in a single run are evolutionary multi-objective
optimization algorithms, such as genetic algorithms, evolution
strategies, and evolutionary programming (see [5,4] for a com-
plete review of this topic).

In this paper, the latter approach is adopted, with the addi-
tional incorporation of imprecise information about the prefer-
ences of the decision maker in order to guide the search. This
information consists of linear constraints on the weights of
importance of the criteria.

The theoretical approach, which constitutes the starting point
for the analysis presented in this paper, is established below: by
using weights of importance of the criteria in the Rs-simplex
Ds-1
¼ flARs

þ 9
Ps

i ¼ 1 li ¼ 1g, the vector valuation of each feasible
decision can be reduced to a scalar valuation. When it is possible
to determine an exact weighting vector, lADs�1, two relevant
solutions in the class of MOPs are the utilitarian and the min–max
solutions. These are rationalized by an additive value function,Ps

i ¼ 1 lif iðxÞ, and by the function maxi ¼ 1,...,sff iðxÞ=lig, respectively.

Defnition 2.2. The utilitarian solution, Ul, selects, for every
problem ðX,f Þ, the set

UlðX,f Þ ¼ arg min
xAX

Xs

i ¼ 1

lif iðxÞ:

Defnition 2.3. The min–max solution, Ml, selects, for every
problem ðX,f Þ, the set

MlðX,f Þ ¼ arg min
xAX

max
i ¼ 1,...,s

f iðxÞ

li

� �
:

Remark 2.4. Note that the outcomes associated to the min–max
multi-criteria solution can be obtained by solving a min–max
problem which is equivalent to the following:

min t

s:t: : f iðxÞrlit, i¼ 1,2, . . . ,s,

xAX

9>=
>; ð2:1Þ

If the weights associated to the criteria are identical, that is
li ¼ lj for all i, jAf1,2, . . . ,sg, then the utilitarian solution, based on
the L1 metric,3 and the min–max solution, based on the Tcheby-
chev metric,4 are obtained. The utilitarian solution exhibits no

2 Notice that we do not assume continuity neither in the feasible decision set

(it may consist of a finite set of alternatives) nor in the objective function.

Nevertheless, as compensability between the criteria is assumed, we consider that

the valuations of feasible decisions are normalized in order to they can be

compared.

3 The L1 distance between z1 ARs and z2 ARs is d1ðz
1 ,z2Þ ¼

Ps
i ¼ 1 9z

1
i �z2

i 9.
4 The Tchebychev distance between z1 ARs and z2 ARs is d1ðz1 ,z2Þ ¼

maxf9z1
i �z2

i 9, i¼ 1,2, . . . ,sg.
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