
Approximating multi-objective scheduling problems

Said Dabia a,b,n, El-Ghazali Talbi c, Tom van Woensel b, Ton De Kok b

a Eyefreight B.V., the Netherlands
b Eindhoven University of Technology, School of Industrial Engineering, The Netherlands
c University of Lille, INRIA, CNRS, France

a r t i c l e i n f o

Available online 20 December 2012

Keywords:

Multi-objective decisions

State-dependent costs

Approximation

Dynamic programming

E-Dominance

a b s t r a c t

In many practical situations, decisions are multi-objective by nature. In this paper, we propose a

generic approach to deal with multi-objective scheduling problems (MOSPs). The aim is to determine

the set of Pareto solutions that represent the interactions between the different objectives. Due to the

complexity of MOSPs, an efficient approximation based on dynamic programming is developed. The

approximation has a provable worst case performance guarantee. Even though the approximate Pareto

set consists of fewer solutions, it represents a good coverage of the true set of Pareto solutions. We

consider generic cost parameters that depend on the state of the system. Numerical results are

presented for the time-dependent multi-objective knapsack problem, showing the value of the

approximation in the special case when the state of the system is expressed in terms of time.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many optimization problems encountered in practice are
multi-objective by nature, i.e., different objectives are conflicting
and equally important. Many times, it is not desirable to drop
some of them or to optimize them in a hierarchical manner. For
instance, while designing a product, many criteria are taken into
account: the product’s reliability should be maximized, while the
cost and the environmental impact should be minimized.

Contrary to single-objective optimization problems where the
optimal value is unique, the aim of multi-objective optimization
problems (in short, MOPs) is to determine the set of solutions
representing the trade-offs between the different conflicting
objectives. This set of solutions is denoted as the set of Pareto
solutions or the Pareto front. In this line of thought, decision
makers are presented with the entire Pareto front (rather than a
single solution) to select a solution (or a region of solutions)
depending on their preferences. Although the roots of multi-
objective optimization go back to the nineteenth century in
the work of Edgeworth [3] and Pareto [24], most optimization
problems dealt with are single-objective. In fact, objective func-
tions are usually reduced to a composite single-objective function
by using a (weighted) sum of the various objectives. It is argued
that solutions obtained in this way might represent only a subset

of the entire set of Pareto solutions, and therefore could lead to
suboptimal managerial decisions [4,22,31].

In multi-objective decision making, the number of Pareto
solutions increases with the size of the problem, mainly with
the number of objectives. Therefore, multi-objective decision
making is very challenging. In fact, multi-objective problems are
NP-hard. Hence, it is computationally expensive to compute the
complete Pareto front. Furthermore, multi-objective decision
making does not end when the Pareto front is found. In practice,
only a single solution (or a region of solutions), taking decision
makers preferences into account, needs to be implemented. There
exist several methods allowing the selection of a solution from
the Pareto front [7]. These methods might not converge easily
when the size of the Pareto front is very large. Consequently,
many researchers direct their efforts to approximating the Pareto
front to reduce the complexity of the applied algorithms. Approx-
imate Pareto fronts contain fewer solutions, which facilitate the
selection of a final solution. However, a good approximate Pareto
front should properly represent the real Pareto front.

In this paper, an approximation algorithm based on dynamic
programming is proposed for multi-objective scheduling problems

(MOSPs). The multi-dimensional state space is partitioned into
intervals with exponentially increasing size. Each interval defines a
cluster of states considered to be very close to each other. From
each cluster, only one state is kept and the dynamic programming
is adapted to the partitioned state space. In this way, in each
iteration of the dynamic programming, only a polynomial number
of states is processed. The approximation has a provable perfor-
mance guarantee. Even with fewer solutions, the resulting approx-
imate Pareto front still properly covers the real Pareto front as each
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Pareto solution is represented by at least one approximate Pareto
solution. The proposed approximation can be applied to the multi-
objective version of a variety of well-known optimization problems
for which a dynamic programming formulation is possible (e.g.,
knapsack problems, shortest path problems, variants of vehicle
routing problems, job scheduling problems, etc.). Furthermore, we
consider a generic cost structure where costs depend on the state
of the system. In many practical situations, cost parameters are not
constant. In the transport sector, for instance, carriers work with
tariff sheets where costs are computed depending on the utiliza-
tion of their fleets. In fact, the tariff depends on the truck load or on
the total kilometers traveled. We show the value of the approx-
imation by applying it to the time-dependent multi-objective
knapsack problem where the state of the system is expressed as
a function of time.

The contributions of this paper are summarized as follows.
A generic approximation is proposed which can be applied to
multi-objective scheduling problems for which a dynamic pro-
gramming formulation is possible. The approximation generates
an approximate Pareto front with fewer solutions. The approx-
imate Pareto front represents a very good coverage of the real
Pareto front. Additionally, the approximation’s worst case perfor-
mance guarantee is provable. The approximation is flexible in the
sense that the decision maker can choose different precision
levels for the different objectives. In fact, the decision maker
might be willing to tolerate more error for less sensitive objec-
tives (i.e., with a ‘‘flat’’ cost structure). Finally, this paper deals
with a class of realistic MOSPs for which costs are state-
dependent. For instance, in a traffic network, travel costs are a
function of travel times which change depending on the state of
the traffic network (e.g., due to congestion).

This paper is organized as follows. Section 2 reviews the
literature relevant to MOPs. Section 3 is devoted to the introduc-
tion of the main concepts related to MOPs. Section 4 describes a
generic MOSP, the input structure and the dynamic programming
formulation for the MOSP. In Section 5, an approximation of the
Pareto front is developed and the main results of the paper are
derived. In Sections 6 and 7, the methodology developed in this
paper is validated on the time-dependent multi-objective knap-
sack problem. Finally, Section 8 concludes with a summary of the
main results.

2. Selected literature review

As in single-objective optimization, MOPs can be divided into
two categories: problems with real-valued variables, also known
as continuous MOPs, and problems with discrete variables, known
as multi-objective combinatorial optimization problems (MOCO).
In the class of continuous MOP, usually an infinite number of
Pareto solutions composes the Pareto front, whereas in combina-
torial MOPs, the Pareto front is finite. Most heuristics for solving
MOPs are designed to deal with continuous MOPs using, for
instance, multi-objective simplex [37,29]. In the last decade, there
is a growing interest in solving combinatorial MOPs. However, in
most cases, they are bi-objective optimization problems. Further-
more, there is a lack of test instances for real-life combinatorial
MOPs, especially problems with many objectives [11,19] and
dynamicity [6].

The study of computational complexity classes for MOCO
started with the work of Serafini [28], and Papadimitriou and
Yannakakis [23], where a connection was made between the
results obtained in single-objective combinatorial optimization
and the multi-objective field for several optimization problems.
Serafini [28] depicts nine possible definitions for MOCO problems
and establishes reductions between them in order to facilitate

obtaining complexity results. He shows that the following defini-
tion (denoted as V8 in his article) can be considered as a standard
reference version to measure the computational complexity of
MOCO problems. The definition can also be seen as the decision
problem associated with a MOCO problem.

Definition 1 (Generic definition of MOCO by Serafini [28]). Given
zAZn, does there exist a solution x to MOCO such that
giðxÞrzi,1r irn?

Where the functions gi reflect some measures of interest, and
gi(x) is computable in polynomial time. AnNP-hard single-objective
problem implies an NP-hard character to its multi-objective exten-
sions. In the multi-objective case, the NP-hardness appears for the
majority of problems. For example, NP-hardness is proved for
shortest path problems, assignment problems and minimum max-
imal matching by Serafini [28]; for the minimum weight spanning
tree by Camerini and Vercellis [1]; and for the max-linear spanning
tree by Hamacher and Ruhe [8].

Similarly to single-objective optimization problems, MOPs can
be solved by means of exact and approximate algorithms. In the
literature, more attention has been devoted to bi-criteria optimi-
zation problems by using exact methods such as branch-and-
bound algorithms [27,32,33,26,17], branch-and-cut [12], An algo-

rithm [30,20], and dynamic programming [34,2]. There exist some
new advances in this area, with several exact approaches pro-
posed in the literature for bi-objective [16,14,18] and multi-
objective problems [16]. Approximate methods are mainly used
to solve large-scale problems and when multiple criteria are
involved. They can be divided into two classes. On the one hand,
there are algorithms that are only applicable to a specific
problem. Such algorithms are developed based on some knowl-
edge on the structure of the problem at hand. On the other hand,
we see metaheuristics which are of general purpose, in the sense
that they can be applicable to a large variety of MOPs. A unifying
view for analyzing, designing and implementing multi-objective
metaheuristics is provided in the book by Talbi [31]. The main
drawback of metaheuristics is the lack of guarantee with regard
to the quality of the approximate Pareto front. Moreover, the
resulting approximate Pareto fronts might not properly cover the
real Pareto front as they might contain very few solutions.

In the context of single-objective optimization problems, an
E-approximation scheme is an algorithm that, for every instance
of the problem, finds an approximate solution that is guaranteed
to be within a random constant factor from optimal. Two classes
of approximation schemes are mainly considered: polynomial
time approximation scheme (PTAS) and fully polynomial time
approximation scheme (FPTAS). For any E40, a PTAS has run-
time which is polynomial in the size of the instance, while an
FPTAS has run-time which is polynomial in the size of the
instance and 1=E. From a computational complexity point of view,
FPTASs are the strongest approximation schemes with perfor-
mance guarantee that can be obtained for NP-hard optimization
problems. The notion of approximation schemes can be general-
ized to the case of multi-objective optimization problems by
considering, for each solution on the approximate Pareto front,
worst case performance guarantees with regard to all criteria [5].
In Legriel et al. [15] and Marinescu [21], approximation methods
for multi-objective optimization problems are provided. However,
the complexity of the presented algorithms is not analyzed.

3. Definitions, variables and background

This section aims to give the relevant definitions used in the
remainder of the paper.
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