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a b s t r a c t

The problem of parallel machine scheduling for minimizing the makespan is an open scheduling

problem with extensive practical relevance. It has been proved to be non-deterministic polynomial

hard. Considering a job’s batch size greater than one in the real manufacturing environment, this paper

investigates into the parallel machine scheduling with splitting jobs. Differential evolution is employed

as a solution approach due to its distinctive feature, and a new crossover method and a new mutation

method are brought forward in the global search procedure, according to the job splitting constraint.

A specific local search method is further designed to gain a better performance, based on the analytical

result from the single product problem. Numerical experiments on the performance of the proposed

hybrid DE on parallel machine scheduling problems with splitting jobs covering identical and unrelated

machine kinds and a realistic problem are performed, and the results indicate that the algorithm is

feasible and efficient.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As an important branch of machine scheduling problem,
parallel machine scheduling (PMS) problem is a typical schedul-
ing problem with extensive practical relevance [1,2]. It focuses on
the problem of scheduling N jobs on M parallel machines. When
the processing time of each job is the same on all those M

machines, the problem is said to be identical PMS problem.
Besides, there are two other types of the problem: uniform PMS
problem and unrelated PMS problem.

The solution approach to the PMS problem mainly includes
heuristic algorithm [3] and intelligent optimization method
(i.e., tabu search, genetic algorithm, etc.). And the genetic algo-
rithm has been widely studied to solve the problem. Fu [4], Liu
and Wu [5] applied genetic algorithm to the identical PMS
problem with the objective of minimizing the makespan, and
the result shows that genetic algorithm performs better than
heuristic algorithm. Cheng and Gen [6], Liu and Wu [7], and Zhao
et al. [8] adopt genetic algorithm to the identical PMS problem
with earliness and tardiness penalties. These researches focus on
identical PMS problem. While in a real manufacturing environ-
ment, unrelated PMS problem is more widespread. Liu et al. [9],

Yin et al. [10], Tavakkoli-Moghaddam et al. [11], Vallada and Ruiz
[12], Liu and Wang [13] studied unrelated PMS problem, and genetic
algorithm and particle swarm optimization were applied to the
problem, respectively. Huang and Guo [14] put forward a hybrid
genetic algorithm for the multi-objective unrelated PMS problem.

A job cannot be split in the traditional PMS problem studied in
the above researches, while under the batch production mode in a
real manufacturing environment, a job may consist of a batch of
identical units in the production scheduling problem. And by
splitting the original job and distributing to different machines, a
faster completion can be obtained. The problem is called the PMS
problem with splitting jobs [15]. There are very few researches on
this kind of problem at present.

Xing and Zhang [15] presented a heuristic to solve the identical
PMS problem with splitting jobs to minimize the makespan.
Serafini [16] studied job splitting on the identical parallel machines
in a textile industry to minimize the maximum weighted tardiness.
Kim et al. [17] proposed a two-phase heuristic algorithm for the
identical PMS problem with splitting jobs to minimize total
tardiness: In the first phase, an initial sequence is constructed
through an existing heuristic method in Ref. [18]; In the second
phase, each job is split and distributed until the completion time
cannot be reduced any more. Shim and Kim [19] put forward a
branch and bound algorithm for the identical PMS problem with
splitting jobs based on the objective of minimizing total tardiness,
using a two-phase heuristic algorithm in Ref. [17] to get an initial
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upper bound. Logendran and Subur [20] investigated an unrelated
PMS problem with splitting jobs where jobs are split beforehand,
and a tabu-search-based heuristic algorithm is developed for
minimizing the total weighted tardiness. Although these existing
researches either limit to the problem with identical parallel
machines or with job splitting predetermined, their achievements
still provide an important basis for our further study.

This paper studies the PMS problem with splitting jobs,
covering identical and unrelated machine kinds. Considering the
constraint that the total number of units contained in a job should
remain the same before and after job splitting, differential
evolution (DE) [21–22] is adopted as a solution approach, based
on our finding that the sum of values of genes in an individual
remains the same before and after mutation [23–24]. In spite of
DE’s successful application in production scheduling [25–28], this
is the first time that DE is applied to the PMS problem, taking full
advantage of its distinctive feature.

2. Problem description and model formulation

There are N jobs in set JB¼ fJi91r irNg to be processed on M

parallel machines, denoted by set EC ¼ fEl91r lrMg. Each job Ji

consists of a batch of identical units, and BSi denotes the number
of units in the job (the original size of the job). Let Til be the unit
processing time of job Ji on machine El, where i¼ 1,2,. . .,N and
l¼ 1,2,. . .,M. The machines are said to be identical when
Ti1 ¼ Ti2 ¼ � � � ¼ TiM for each job Ji. While in a more general case,
machines are unrelated, meaning that the unit processing time of
a job does not have to be the same on all those M machines.

Traditional PMS problems are under the hypothesis that each
job can be processed on any one of the M machines. However, in a
real manufacturing environment, not all of the M machines are
capable of processing each job. Let EQi ¼ fEQij91r jrEBig be the
set of available machines for job Ji. Apparently, EQiDEC and
EBirM, where i¼ 1,2, � � � ,N.

The objective of the problem is to minimize the makespan.
A job is allowed to be split and distributed to different machines
to obtain a faster completion. In our problem, the completion
time of a machine depends on the number of units from each job
distributed to the machine rather than the processing sequence.
Thereby, the number of units from Ji distributed to machine El,
denoted by BNil, are to be determined, i¼ 1,2,. . .,N, l¼ 1,2,. . .,M.
The problem is formulated as follows.

min Z ¼ Cmax ð1Þ

where Cmax stands for the maximum completion time

Cmax ¼ max
M

l ¼ 1

XN

i ¼ 1

BNil � Tilð Þ ð2Þ

XM
l ¼ 1

BNil ¼ BSi, BNil is an integer ð3Þ

Eq. (1) specifies the objective to minimize the makespan,
defined by the maximum completion time among all machines.
Eq. (2) provides the calculation method for the makespan. Eq. (3)
requires the total number of units from a job distributed to the M

machines should remain the same as the original size of the job.
We call it the job splitting constraint.

3. Analysis for the problem with N¼1

Consider a simple problem where N¼ 1, M¼ 2, the original
size BS1 ¼ 10, and the unit processing time T11 ¼ T12 ¼ 2. It is
obvious that when the job is split equally and distributed to the

two machines (that is, BN11 ¼ BN12 ¼ 5), the optimal makespan
can be obtained. In that case, machine E1 and machine E2

complete at the same time, and Cmax ¼ 10.
In fact, we can conclude that for the N¼ 1 problem, when the

job is split and distributed in such a way that makes each
machine completes at the same time as shown in Fig. 1, the
optimal makespan can be obtained. However, considering the job
splitting constraint and the constraint that BNil should be integer
numbers, machines may not always complete at the same time.
For example, when N¼ 1, M¼ 3, BS1 ¼ 10 and T11 ¼ T12 ¼ T13 ¼ 2,
the optimal schedule occurs when we distribute 4 units to one
machine and 3 units to each of the other two machines. In this
case, the three machines complete at time 6, 6 and 8, respectively.
And the optimal makespan is Cmax ¼ 8.

On the basis of the above analysis, a job splitting and
distributing method for the N¼ 1 problem with makespan criter-
ion is developed in the following steps.

Step 1. BNil (l¼ 1,2,. . .,M) are calculated according to Eq. (4),
where [] means to get the nearest integer.

BNil ¼
1=TilPM

l
0
¼ 1

1=T
il
0

� �� BSi

2
4

3
5, i¼ 1, ð4Þ

In Eq. (4), the job is split and distributed to machines in
proportion to their unit processing speeds. However, there
may be some units left due to the rounding function in Eq. (4),

which means there may exist
PM

l ¼ 1 BNiloBSi.

Step 2. Execute step 4 if BSi�
PM

l ¼ 1 BNil

� �
¼ 0, meaning

that all the units in the job are distributed. Otherwise, execute

step 3 if BSi�
PM

l ¼ 1 BNil

� �
Z1.

Step 3. Denote FTl as the completion time of machine El. And

we can get that FTl ¼ BNilþ1ð Þ � Til (l¼ 1,2, � � � ,M) when we
distribute one more unit to each machine. Execute

BNil ¼ BNilþ1 for the former BSi�
PM

l ¼ 1 BNil

� �
machines in

the ascending order of their completion time.
Step 4. So far, all the units in the job have been distributed.
Recalculate the completion time for each machine by carrying
out FTl ¼ BNil � Til, where i¼ 1 and l¼ 1,2,. . .,M. And the
maximum completion time Cmax ¼ max

M

l ¼ 1
fFTlg.

4. New hybrid differential evolution

For the PMS problem with splitting jobs when N41, each job
Ji is to be split and distributed to machines in EQi, where

Fig. 1. Optimal schedule for the problem with N¼ 1.
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