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a b s t r a c t

Given an instance of the Rural Postman Problem (RPP) together with its optimal solution, we study the

problem of finding a good feasible solution after a perturbation of the instance has occurred. We refer to

this problem as the reoptimization of the RPP. We first consider the case where a new required edge is

added. Second, we address the case where an edge (required or not) is removed. We show that the

reoptimization problems are NP-hard. We consider a heuristic for the case where a new required edge

is added which is a modification of the cheapest insertion algorithm for the traveling salesman problem

and show that it has a worst-case ratio equal to 2. Moreover, we show that simple algorithms to remove

an edge from an optimal RPP tour guarantee a tight ratio equal to 3/2. Computational tests are made to

compare the performance of these algorithms with respect to the Frederickson algorithm running from

scratch.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Arc routing problems are vehicle routing problems where
customers are represented by edges or arcs of a network. Such
problems arise in a variety of practical contexts, such as street
sweeping, garbage collection, mail delivery, meter reading or full
truckload transportation. Even if they are much less studied than
node routing problems, they recently inspired a rich and ever
growing body of literature. We refer to the book edited by Dror
[17] and the recent paper by Corberán and Prins [14] for a
comprehensive overview on arc routing problems.

In this paper we consider the undirected Rural Postman
Problem (RPP) which consists in determining a minimum cost
cycle traversing at least once each edge belonging to a given
subset of the edges of an undirected graph. The edges to be
traversed are said to be required. The RPP has been introduced by
Orloff [27] and later proved to be NP-hard by Lenstra and
Rinnooy Kan [25]. However, the special case of the RPP where
the subgraph induced by the required edges is connected can be
solved in polynomial time as it reduces to the Chinese Postman
Problem (CPP) (e.g., see [18]).

The heuristic proposed by Frederickson [19] is the constructive
algorithm with the best known approximation ratio for the RPP.
The heuristic is designed along the lines of the algorithm
proposed by Christofides [15] for the Traveling Salesman Problem
(TSP) and, similarly to the latter, it has a worst-case ratio of 3/2.

In classical optimization is implicitly assumed that all the
information concerning the instance is known at the time the
search for an optimal solution begins. Additionally, it is also
implicitly assumed that no information is available about the
solution of the instance or of related instances. Even if this is the
situation in several cases, it is often convenient to build partial
solutions before all the information about the instance becomes
known, or it frequently happens that new information is unex-
pectedly received after an optimal solution has been constructed,
possibly with a heavy computational burden. For instance, in
many applications it is convenient to find an optimal solution of
an instance composed of a restricted set of inputs representing a
constant over time environment and then managing dynamically
the non-constant inputs. On the other hand, in important applica-
tion areas, such as airlines [13], railways [33] and dial-a-ride
problems [6,7], events that modify the instance before the solu-
tion is fully or partially implemented are frequent. The occurrence
of these events is usually referred to as disruption and some
examples are cancellation of orders, the break-down of a link in a
communication network or the unavailability of one member of a
crew. In all the former situations some questions arise: How long
will it take to recover optimality? If the time taken is unaccep-
table, how can a good solution be obtained? Can one take
advantage of the optimal solution already computed or should a
new solution be computed from scratch?

The previous situations can be formalized as follows: Given an
instance of an NP-hard optimization problem together with an
optimal solution, a new optimal solution has to be found after a
perturbation of the instance has occurred. The problem of taking
into account the knowledge of an optimal solution to solve the
new instance is referred to as reoptimization. Reoptimization aims
at determining whether the knowledge of an optimal solution of
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the original instance can be used to design either algorithms that
achieve better approximation ratios than algorithms running from
scratch or faster algorithms (or even both). In recent years, reopti-
mization problems are receiving increasing attention. Reoptimiza-
tion has been studied for scheduling problems (e.g., [32,31]), for the
0–1 knapsack problem by Archetti et al. [2] and for set covering
problems by Bil�o et al. [8] and Mikhailyuk [26]. Several contribu-
tions appeared on reoptimization of graph-based problems. Gallo
[22] and Pallottino and Scutell�a [28] consider reoptimizing shortest
paths when the cost of the arcs changes. Reoptimization for the
minimum spanning tree problem is investigated by Boria and
Paschos [12] and by Papadaki and Speranza [29]. In [29] the
reoptimization of the maximum flow problem is also studied.
The Steiner tree problem is analyzed in Böckenhauer et al. [10].
Several papers studying the reoptimization of variants of the TSP
appeared in the literature. Archetti et al. [1] consider reoptimizing
the TSP when a node is added or removed. Böckenhauer et al. [9,10]
study the reoptimization problem when the weight of a single edge
changes in a TSP instance. Ausiello et al. [3] investigate the
(minimum) TSP and the maximum TSP when any number of nodes
have to be inserted or removed from the instance. Böckenhauer and
Komm [11] analyze the effectiveness of reoptimization of the TSP
with deadlines, considering insertion and removal of a vertex as well
as of a deadline. Finally, the recent contribution by Ausiello et al. [4]
gives an overview on reoptimization problems. The authors first
provide some general properties for the reoptimization of NP-hard
problems. Then, they review the application of reoptimization to
some problems, namely the knapsack problem, the Steiner tree
problem, a scheduling problem, and several variants of the TSP.

Contributions of the paper: We consider the following problem:
Given an instance of the RPP together with an optimal solution, a
perturbation of the instance takes place and a new instance has to
be solved. We refer to this problem as the reoptimization of the

RPP. We aim at exploiting the availability of an optimal solution of
the original instance to find good solutions for the perturbed
instance in an efficient manner, rather than running the optimi-
zation on the new instance from scratch. We consider two kinds
of perturbations of the instance, namely the addition and the
removal of one edge. In the case of one edge removal we address
two cases separately, i.e. the case the edge is required and the
case it is not. We analyze the computational complexity of the
reoptimization problems. We prove that the considered reopti-
mization problems are NP-hard. We propose simple approxima-
tion algorithms to solve them. We analyze the worst-case
behavior of the approximation algorithms and show that they
outperform in terms of running time other approximation algo-
rithms for solving the RPP from scratch. Specifically, we show that
a cheapest insertion algorithm has a worst-case ratio equal to
2 when used to insert the new edge into an optimal RPP tour.
While the worst-case behavior is worse than the Frederickson
algorithm [19], the computing time is linear instead of exponen-
tial in the number of connected components in the subgraph
induced by the required edges [16]. Finally, we conjecture that
the worst-case ratio is actually 3/2 and provide instance-related
conditions under which the latter bound is tight.

We also introduce simple algorithms based on computing the
shortest path between two nodes to tackle the problem of removing
an edge from an RPP instance. The time complexity of the algo-
rithms is polynomial, due to the computation of the shortest path
(see [20]), and outperforms the Frederickson algorithm [19]. More-
over, we show that the approximation algorithms proposed to
remove an edge guarantee a tight worst-case ratio equal to 3/2.

We perform computational experiments adapting benchmark
RPP instances to the reoptimization problems. Computational
results show the nodal importance of reoptimization both in
terms of quality of the solution and efficiency of the computation.

Structure of the paper: The reoptimization problems are described
in Section 2. The problems of inserting to and removing an edge
from an optimal RPP tour are analyzed in Sections 3 and 4,
respectively. Computational tests and results are illustrated in
Section 5. Finally, in Section 6 some concluding remarks are drawn.

2. The reoptimization problems

We consider the undirected Rural Postman Problem (RPP)
defined on a complete undirected graph G¼ ðV ,EÞ, where V ¼

f1,2, . . . ,ng is the set of nodes, E is the set of edges, and dði,jÞ is the
symmetric distance between nodes i and j. A subset of edges R� E

is given, and each edge ði,jÞAR is said to be required. The RPP is the
problem of finding a minimum cost circuit traversing at least once
all edges in R. The remaining edges, i.e. edges in E\R, may be part
of the solution. Hereafter, we will denote as m¼ 9R9 the number
of required edges. Moreover, we will denote as znm the cost of an
optimal tour for the RPP with m required edges. The optimal RPP
tour is denoted as tn ¼ ðv1,v2, . . . ,v9tn9Þ, where vb stands for the
b-th node visited in tour tn. Obviously, v1 must coincide with v9tn9.
We assume that distances satisfy the triangle inequality.

RPPþ is the reoptimization problem when a new required edge
is added to the instance. RPPþ can be formally described as
follows. Given an optimal solution of the RPP on G with m

required edges, a new required edge ðnþ1,nþ2Þ and the distances
dðnþ1,nþ2Þ, dði,nþ1Þ and dði,nþ2Þ, with i¼ 1, . . . ,n, determine
an optimal tour for the RPP on the complete graph G0 ¼ ðV 0,E0Þ,
where V 0 ¼ V [ fnþ1,nþ2g is the set of nodes, E0 is the corre-
sponding set of edges, and R0 ¼ R [ fðnþ1,nþ2Þg is the new set of
required edges. The minimum cost of the RPPþ is denoted as
znmþ1. Note that an optimal tour for the RPPþ is an optimal tour
for the RPP with mþ1 required edges.

The problem of reoptimizing an optimal tour for the RPP when
an edge is removed from the instance is tackled by addressing
two cases separately.

RPP�R is the reoptimization problem when an edge is removed
and the edge removed is required. RPP�R can be formally defined
as follows. Given an optimal solution of the RPP on G with m

required edges and a required edge ðk,hÞAR, determine an
optimal tour for the RPP on graph G¼ ðV ,EÞ, where R\fðk,hÞg is
the new set of required edges. The minimum cost of the RPP�R is
denoted as znm�1. Note that an optimal tour for the RPP�R is an
optimal tour for the RPP with m�1 required edges.

RPP�N is the reoptimization problem when an edge is removed
and the edge removed is not required. We assume that the optimal
RPP tour before the removal traverses the edge to be removed,
otherwise no reoptimization is needed. RPP�N can be formally defined
as follows. Given an optimal solution of the RPP on G with m required
edges and a not required edge ðf ,lÞAE\R, determine an optimal tour
for the RPP on graph G00 ¼ ðV ,E00Þ, where E00 ¼ E\fðf ,lÞg is the new set
of edges. The minimum cost of the RPP�N is denoted as znmðE

00
Þ. Note

that an optimal tour for the RPP�N is an optimal tour for the RPP with
m required edges on graph G00.

3. Adding a new required edge to an optimal solution

In this section we study the RPPþ problem. First, we show that
no polynomial time algorithm exists for the problem unless
P ¼NP. Then, we provide the worst-case analysis of a simple
heuristic that inserts the new required edge into an existing
optimal solution of the RPP.

We assume that even after adding the new required edge the
subgraph induced by the required edges is still not connected
otherwise the problem reduces to a CPP. Furthermore, note that
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