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a b s t r a c t

This paper presents an approach to solving discretely constrained, mixed linear complementarity

problems (DC-MLCPs). Such formulations include a variety of interesting and realistic models of which

two are highlighted: a market-clearing auction typical in electric power markets but suitable in other

more general contexts, and a network equilibrium suitable to energy markets as well as other grid-

based industries. A mixed-integer, linear program is used to solve the DC-MLCP in which both

complementarity as well as integrality are allowed to be relaxed. Theoretical and numerical results are

provided to validate the approach.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present a new approach to solve discretely
constrained, mixed linear complementarity problems (DC-MLCPs)
in which some of the variables are constrained to be integer-
valued and some can take on continuous values. This is an
important extension of the general MLCP in which all variables
are assumed to be continuous and relates for example to Nash–
Cournot games in which some of the players’ variables are
discrete and some are continuous. A mixed-integer linear pro-
gram (MILP) is presented which solves DC-MLCPs with comple-
mentarity and integrality suitably relaxed. As an example in
Section 2 shows, enforcing exact complementarity and exact
integrality may not be feasible. From a compromise perspective,
the MILP that relaxes both of these conditions is somewhat
related to the notion of bounded rationality in equilibrium
systems as discussed in [22].

This focus on integer variables (and/or related techniques) and one
[8] or two-level equilibria, e.g., mathematical programs with equili-
brium constraints [21] has seen some research efforts over the years
in both modeling and methods (e.g., [5,20,1,23,24,15,13,3]) and joins
two important fields of operations research. This work also has
relevance to both energy market modeling [25] and network optimi-
zation [17].

Section 2 presents a general formulation for an MLCP with a
mixture of discrete and continuous variables and introduces two
relaxations: s-complementarity and e-integrality. Depending on
the particular application one or both of these relaxations may be
useful. Theorem 1 provides justification for one of the disjunctive
constants (M2) used in this MILP. Theorem 2 shows under
reasonable conditions, when there exists a solution to this MILP.
Section 2 also discusses some practical aspects of solving the
aforementioned DC-MLCP including a heuristic for how to esti-
mate the key complementarity relaxation constant M1 in a
general context. Note that these constants are problem specific
and change with the type of application. In Theorem 4 we show
how to calculate M1 for an illustrative network example.

In Section 3, the general DC-MLCP is specialized to a market-
clearing problem. Such a problem is an auction mechanism to
determine which production offers and consumption bids are
accepted by the market operator, which has the target of max-
imizing social welfare. Social welfare is computed based on
producer-declared offer prices and consumers’ declared bid
prices, and therefore it is called ‘‘declared’’ social welfare. The
clearing algorithm that is considered is intended for electricity
markets and specifically represents the transmission (transporta-
tion) network and its capacity. The algorithm is also multi-period
as it considers simultaneously the clearing of the market at
several time periods (e.g., the hours of the day). Market-clearing
algorithms of this type are commonly used by electricity market
operators across the East Coast of the United States (http://www.
pjm.com, http://www.iso-ne.com). The algorithm that we pro-
pose provides clearing prices that support market outcomes in
the sense the producers that are actually producing have no
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incentive to leave the market. Note that this is so even though the
proposed market-clearing formulation is non-convex and repre-
sents a new approach for this previously studied uplift problem.
In other words, we propose a consistent price mechanism within
a non-convex market clearing formulation.

The distinguishing features of the proposed pricing technique
with respect to other procedures reported in the technical
literature (e.g., [16,18,4]) are two-fold. First, the initial market-
clearing problem is not manipulated to achieve prices that
support market outcomes. Instead, optimality conditions of the
original problem with integrality conditions relaxed are formu-
lated and incorporated into a relaxation problem that allows
realizing the tradeoff of integrality vs. complementarity, and
obtaining via uplifts, prices that support market outcomes.
Second, instead of using a two-step procedure (first solving the
original MILP and then formulating and solving a modified LP), as
indicated above, the proposed technique is single-step, and does
not require altering the original problem by fixing integer vari-
ables to their optimal values to formulate a continuous problem
from which prices (that support market outcomes) can be
derived.

In Section 4, a stylized network equilibrium problem with
multiple players is presented from [14] based on the earlier works
[11,12]. This application is suitable to energy and other grid-
based industries involving multiple players and a system opera-
tor. For this problem, two theoretical results are presented. In
Theorem 3, under a very mild condition on the demand function,
it is shown that there exists a valid bound M1 that does not cut off
any solutions. Then, in Theorem 4, given linear demand functions,
a specific valid disjunctive constraints value for M1 is presented.
Both these sorts of results are application-specific but presented
in a rather general network context to show how they might be
done for other related problems as well as give guidance for this
specific one.

After these motivating examples, in Section 5, we provide
numerical experiments that validate the proposed approaches
followed by conclusions and extensions in Section 6.

2. Discretely constrained mixed linear complementarity
problems

2.1. Problem formulation

We consider a general, discretely constrained mixed linear
complementarity problem. The formulation is as follows: given
the vector q¼ ðqT

1 qT
2Þ

T and matrix A¼ ðA11
A21

A12
A22
Þ, find z¼ ðzT

1,zT
2Þ

T A
Rn1 � Rn2 such that

0rq1þðA11 A12Þ
z1

z2

 !
? z1Z0 ð1aÞ

0¼ q2þðA21 A22Þ
z1

z2

 !
z2 free ð1bÞ

ðz1Þc ARþ , cA IC
1 , ðz1ÞdAD1DZþ , dA ID

1 ð1cÞ

ðz2Þc AR, cA IC
2 , ðz2ÞdAD2DZ, dA ID

2 ð1dÞ

where D1, D2 are given discrete sets of values. Also, IC
1 [ ID

1 is a
partition of the indices f1, . . . ,n1g for z1 and IC

2 [ ID
2 a partition of

the indices f1, . . . ,n2g for z2, i.e., zk ¼ ððzkÞ
T
IC
k
ðzkÞ

T
ID
k
Þ
T ,k¼ 1,2 with the

continuous variables shown first, without loss of generality. As an
example, suppose that the nonnegative vector z1 has five compo-
nents, i.e., z1 ¼ ðz11,z12,z13,z14,z15Þ

T with the first and third con-
strained to be discrete and the second, fourth, and fifth continuous.

In that case ID
1 ¼ f1,3g,IC

1 ¼ f2,4,5g, and if D1 ¼ Zþ ,z11,z13A
f0,1,2, . . .g, z12,z14,z15ARþ : Also note that the notation 0rw ?

vZ0 is standard shorthand in complementarity modeling to indi-
cate that the vectors w and v are both nonnegative and their inner
product is zero, i.e., wT v¼ 0.

From here on for specificity, unless otherwise indicated, the
discrete sets, D1 ¼ f0,1, . . . ,Ng and D2 ¼ f�N1, . . . ,�1,0,1, . . . ,N2g

will be assumed with N,N1,N2 nonnegative integers. Note that all
the problem formulations in this paper assume that the problems
are bounded. This is not a restrictive assumption for most real-
world engineering problems where quantities are bounded by
physical limits and shadow prices are often bounded by demand
curves or other economic mechanisms (see Theorems 3 and 4 for
a demonstration of these concepts).

First, the complementarity relationship and nonnegativity for
z1 (1a) can be recast as the following disjunctive constraints [9]:

0rq1þðA11 A12Þ
z1

z2

 !
rM1ðuÞ ð2aÞ

0rz1rM1ð1�uÞ, ujAf0,1g, 8j ð2bÞ

where M1 is a suitably large, positive constant and u is a vector of
binary variables. The other constraints (1b) can be used as is and
taking (1b) with (2) would represent a reformulation of (1) with
just continuous variables z1,z2 allowed. If we assume that there
were a solution to this version of the original problem, the
existence of a solution would not necessarily be guaranteed if
we imposed the discrete restrictions from (1c) and (1d). To be
specific, consider the following counter-example with A¼ ð 1

�1
0
0Þ,

q¼ ð�0:2
0:2 Þ. For z with real components, this LCP is feasible. For

example, z¼ ð0:2, 2ÞT is a solution. However, if the first compo-
nent of z must be integer, i.e., z¼ ðz1,z2Þ

T A Zþ �Rþ , then this
LCP is infeasible. For the LCP to be feasible, there must be an
integer-valued z1 such that ð�0:2

0:2 Þþð
1
�1

0
0Þð

z1
z2
Þ ¼ ð�0:2þ z1

0:2�z1
ÞZ0 which

can only be true if 0:2rz1r0:2. Hence, there are no integer
values of z1 for which this LCP is feasible.

2.2. Relaxation of the complementarity conditions

To protect against infeasibility, relaxations on both comple-
mentarity as well as integrality are used. First, we assume that the
associated LCP is at least feasible, that is, there exists ðz1,z2Þ such
that

0rq1þðA11 A12Þ
z1

z2

 !
, z1Z0 ð3aÞ

0¼ q2þðA21 A22Þ
z1

z2

 !
, z2 free ð3bÞ

Then, to relax complementarity, we introduce a nonnegative
vector s of deviations combined with the disjunctive form of
the complementarity conditions to get

0rq1þðA11 A12Þ
z1

z2

 !
rM1ðuÞþM1s ð4aÞ

0rz1rM1 1�uð ÞþM1s ð4bÞ

with ujAf0,1g,8j. It is not hard to see that by adding the term
M1s, the above complementarity is relaxed and these set of
conditions are always feasible assuming that sZ0 is allowed to
vary. The constant M1 can vary by constraint. Clearly, s¼ 0 means
exact complementarity is enforced. In principle, one could also
add a relaxation to always ensure that the relaxed LCP is feasible
by including a term �M1s instead of zero as the lower bound on
the left-hand side of (4a) and (4b). In what follows, we do not
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