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a b s t r a c t

The periodic event scheduling problem (PESP), in which events have to be scheduled repeatedly over a

given period, is a complex and well-known discrete problem with numerous real-world applications.

The most prominent of them is to find periodic timetables in public transport. Although even finding a

feasible solution to the PESP is NP-hard, recent achievements demonstrate the applicability and

practicability of the periodic event scheduling model. In this paper we propose different approaches to

improve the modulo network simplex algorithm (Nachtigall and Opitz, 2008 [17]), which is a powerful

heuristic for the PESP problem, by exploiting improved search methods in the modulo simplex tableau

and larger classes of cuts to escape from the many local optima. Numerical experiments on large-scale

railway instances show that our algorithms not only perform better than the original method, but even

outperform a state-of-the-art commercial MIP solver.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The periodic event scheduling problem (PESP) as introduced in
[20] models periodically reoccurring events that have to be sched-
uled according to given feasible time spans. Examples for periodic
scheduling involve problems from production, control, or link
scheduling [2], but most importantly its general modeling power
made it the model of choice for the computation of periodic
timetables in public transport, see e.g., [13,18,16,11,19,1]. Recently,
also connections to Graphical Diophantine Equations have been
explored [3] in the case of multiple periods.

The applicability of the model to real-world problems has been
impressively demonstrated by two recent milestones. In 2005, the
new timetable for the underground railway of Berlin was intro-
duced [12], being the first mathematically optimized railway time-
table in practice. And in 2006, the largest Dutch railway company,
the Nederlandse Spoorwegen, introduced a completely new time-
table, with an estimated profit of 40 million Euro annually [8].
However, while the former work considered instances of compara-
tively small size, the latter focused on finding feasible solutions and
only applied postoptimization methods.

The most common approach to solving PESPs is by mixed-
integer programming techniques [15], using integral (minimum)

cycle bases [14]. However, these approaches suffer from high
computation times. In [17] a heuristic approach, the modulo network

simplex method, is presented, which is based on the classic network
simplex method. To the best of our knowledge, this heuristic is
currently the most powerful method to solve large instances.

The focus of this paper is to close the currently existing gap in
large-scale timetable optimization. To do so, we improve the
modulo network simplex method’s performance for practical
timetabling instances, enabling us to compute solutions with
both smaller runtimes and better objective values than both the
original method as well as the commercial MIP solver Gurobi [7].
Specifically, our approach can on average improve the objective
value of a starting solution about 80% faster than the original
method, and about 90% faster than Gurobi, and improve about 7%
more than the original method when no timelimit is imposed.

Overview: We introduce the periodic event scheduling pro-
blem in Section 2. In Section 3, the modulo simplex algorithm is
described, and extended in Section 4. We present the application
of PESP to periodic timetabling and an experimental evaluation in
Section 6, and conclude this work in Section 7.

2. The periodic event scheduling problem

The periodic event scheduling problem (PESP) deals with a set of
events, each of them being repeated whenever T time units have
passed, and assigns a time to any of these events. Formally, we
need the following notations, see [20].
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Let a period TAN be given. A periodic event i is a countably
infinite set of events ip, pAZ, with occurrence times

tðipÞ ¼ tðiÞþp � T :

The set of periodic events is denoted as E. These events may be
linked by activities ADE � E. For any activity a¼ ði,jÞAA, a span

constraint is given. It consists of an interval ½lij,uij� �R and is
satisfied if

ðtðjÞ�tðiÞÞmod TA ½lij,uij�,

i.e., if the periodic time difference between two events lies within
the given interval. The interval bounds lij and uij represent the
minimum and maximum duration of activity (i,j), respectively.
The meaning of these bounds depends on the actual problem
under consideration, see Section 5 as an example.

The PESP can now be stated as follows: For a given finite set E
of events with a period T and a finite set of span constraints A,
find a time t(i) for each periodic event i such that all span
constraints are satisfied. It is shown [20] that PESP is NP-hard
by transformation from the Hamiltonian Circuit Problem. Given a
solution tðiÞ,iAE for PESP, the duration of an activity a¼ ði,jÞAA is
given as ðtðjÞ�tðiÞÞmod T.

The PESP can be further extended using a linear objective
function on the activity durations. Then, we do not only search for
a feasible solution, but instead for an optimal one. Let pi :¼
tðiÞmod TAR be the time assigned to the events iAE for a given
period T such that the span constraints are satisfied, i.e.,
ðpj�piÞmod TA ½lij,uij� for each activity ði,jÞAA. For some given
activity weights wij, we would like to minimizeX
ði,jÞAA

wijððpj�piÞmod TÞ�lij:

The PESP can be interpreted as a graph-theoretical problem by
using the events E as nodes and the activities as edges between
them, see Fig. 1. The resulting network G¼ ðE,AÞ is called event-

activity network.

Example 1. The four events v1,v2,v3,v4 need to be scheduled within
a period of T¼10, fulfilling the six constraints as given in Fig. 1. A
feasible solution is given by p1 ¼ 0, p2 ¼ 5, p3 ¼ 0 and p4 ¼ 5.

Instead of the event times pi,iAE, one can equivalently deter-
mine the slack yij ¼ pj�pi�lij for any edge ði,jÞAA with lower
bound lij. Generally speaking, the slack of an activity is the amount
of time spent additionally to its minimum duration. Using this
concept, an alternative formulation (used by the modulo network
simplex) has been suggested in [16]. Let T ¼ ðE,AT Þ be a spanning
tree with its corresponding fundamental cycle matrix G, then the
periodic event scheduling problem can be formulated as follows:

ðPESPÞ min
X
ði,jÞAA

oijyij

s:t Gðyþ lÞ ¼ Tz 0ryijruij�lij 8ði,jÞAA yijAR

8ði,jÞAA zijAZ 8ði,jÞAA\AT

where y¼ ðyijÞði,jÞAA and l¼ ðlijÞði,jÞAA. For details and correctness we
refer to [16,11]. As the variables zij model the periodic character of
the problem, they will be referred to as modulo parameters.

Note that the modulo parameters are the reason why this
problem is NP-hard. For fixed variables zij the scheduling problem
is called aperiodic and is the dual of a minimum cost flow
problem that can be solved efficiently using the classical network
simplex method.

3. The modulo network simplex method

In this section we briefly describe the method of [17]. Its main
idea is to encode a solution as a spanning tree T l [ T u by setting
the modulo parameters of the tree edges to 0 and the duration of
these activities either to their respective lower or upper bound.

Definition 2 (Nachtigall and Opitz [17]). A spanning tree structure

ðT l,T uÞ is a spanning tree T ¼ T l [ T u with an edge partition such
that yij is set to 0 on all edges ði,jÞAT l and set to uij�lij for all
edges ði,jÞAT u.

A spanning tree structure uniquely determines a periodic
schedule by calculating the slack yij for the missing edges
ði,jÞ =2 T such that the cycle condition Gðyþ lÞ ¼ Tz of (PESP) holds.
On the other hand, it is shown in [16] that

p
z

� �
AQ:¼ conv:hull

p
z

� �
9lijrpj�piþTzijruij; zAZm;pARn

� �� �

is an extreme point of Q if and only if it is a solution that is given
by a spanning tree structure. Thus it is sufficient to investigate
only these solutions.

The modulo network simplex works as follows: as it is the case
in the classic network simplex method, a given feasible spanning
tree solution is gradually improved by exchanging tree and non-
tree edges that lie in the same fundamental cycle, i.e., the cycle that
consists of the non-tree edge and its unique path in the spanning
tree. This is done with the help of a simplex-like tableau.

Example 3. We reconsider Example 1. In Fig. 2(a) the problem
instance is given with period T¼10, and in Fig. 2(b) a feasible
spanning tree structure, where T ¼ T l. The corresponding modulo
simplex tableau can be seen in Table 1. It contains the funda-
mental cycles that are induced by the non-tree arcs e4, e5 and e6.

The objective value wty is calculated by
P
ði,jÞ =2T wijyijþP

ði,jÞAT u
wijðuij�lijÞ. Let yij be the slack vector after pivoting edges

ei and ej. By writing ½y�T :¼ y mod T for short and denoting by bij the
tableau entry for the edges ei and ej, the change in the objective
value when pivoting a non-tree edge ei and a tree edge ej to T l is

otyij�oty¼
X
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while the change when pivoting to T u is

Doij ¼oij�o¼
X

kAA\ðT [figÞ
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Fig. 1. An example PESP.
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