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a b s t r a c t

We deduce approximations for the tail probabilities of the customer delay in a discrete-time queueing

model with batch arrivals and batch service. As in telecommunications systems transmission times are

dependent on packet sizes, we consider a general dependency between the service time of a batch and

the number of customers within it. The model also incorporates a timer mechanism to avoid excessive

delays stemming from the requirement that a service can only be initiated when the number of present

customers reaches or exceeds a service threshold. The service discipline is first-come, first-served

(FCFS). We demonstrate in detail that our approximations are very useful for the purpose of assessing

the order of magnitude of the tail probabilities of the customer delay, except in some special cases that

we discuss extensively. We also illustrate that neglecting batch-size dependent service times or a timer

mechanism can lead to a devastating assessment of the tail probabilities of the customer delay, which

highlights the necessity to include these features in the model. The results from this paper can, for

instance, be applied to assess the quality of service (QoS) of Voice over IP (VoIP) conversations, which is

typically expressed in terms of the order of magnitude of the probability of packet loss due to excessive

delays.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In many real-life circumstances, customers receive some kind
of service in group, which is often referred to as batch service.
An elevator can be conceived as a textbook example, since
elevators can convey several people simultaneously to another
floor. Other examples include transport vehicles, busses, ship
locks, ovens in production processes, attractions in amusement
parks, etc. Furthermore, in telecommunications, it is often the
case that information packets are grouped in larger entities
(batches) and these batches are transmitted instead of each
packet individually. This is mainly done for efficiency reasons,
since only one header per aggregated batch has to be constructed,
instead of one header per single information unit, thus leading to
an increased throughput. Technologies using packet aggregation
include Optical Burst Switched (OBS) networks [1,2] and IEEE
802.11n wireless local area networks (WLANs) [3]. More applica-
tions can, for instance, be found in [4].

On account of the wide area of applications, queueing
models with batch service have attracted considerable attention.

However, the focus was mainly put on the number of waiting
customers (see e.g., [5–16]), whereas the waiting time of custo-
mers, also called customer delay, has attracted very few attention,
especially in the case of batch arrivals.

In [17–19] we have computed the probability generating func-
tion (PGF) of the customer delay in distinct discrete-time queueing
models with batch arrivals and batch service. Although the estab-
lished PGFs allow us to calculate various moments of the customer
delay, these are not suitable to extract tail probabilities. Never-
theless, this is an important performance measure. For instance, the
quality of service (QoS) of Voice Over IP (VoIP) conversations is
generally expressed in terms of the (order of magnitude of the)
probability that packets arrive too late at the end user (see e.g., [20]).
The tail probabilities of the delay in a batch-service queueing model
can, among others, be applied to assess the QoS of VoIP conversa-
tions in wireless personal area networks (WPANs). The queueing
model then represents a node’s output and transmission buffer
corresponding to a particular destination and QoS: the output buffer
is the queue of the batch-service queueing model, the transmission
buffer is the (batch) server (one typically places bursts instead of
individual packets in the transmission buffer to increase the
throughput), and the time that a burst resides in the transmission
buffer is the service time.

In view of this, we have established in [21] an approximation
for the tail probabilities of the customer delay in a batch-arrival,
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batch-service queueing model with single-slot service times and
with a server that only serves full batches (i.e., the server only
starts service when at least as many customers are present as the
server capacity). In [22], we have considered a more versatile
model with a minimum batch size (also called service threshold)
l (i.e., service is initiated only if at least l customers are present,
with l some value between 1 and the server capacity) and
generally distributed service times. In this paper, we extend our
previous work [22]. In [22], the service times do not depend on
the batch sizes, whereas in actual telecommunications systems
transmission times depend on packet sizes. In addition, it has
been shown in [22] that in case of light traffic, the delay can be
extremely high when a minimum batch size is enforced. There-
fore, in the model studied in this paper, we consider a general

dependency between the service time of a batch and the number of

customers within it, and we include a timer mechanism that avoids
excessive delays in case of light traffic as well. It will turn out that
the analysis of these extensions entail various pitfalls and that
neglecting those pitfalls leads to inaccurate approximations. In
addition, we focus more on an extensive evaluation of the
accuracy of our approach. We demonstrate that the established
approximations are very useful to assess the order of magnitude
of the tail probabilities of the customer delay, except in some
peculiar situations which we discuss in detail. Finally, we illus-
trate that neglecting batch-size dependent service times or a
timer mechanism can lead to distorted results, which reflects the
importance of including these features in the model.

The remainder of the paper is structured as follows: in Section 2
we describe the model. Then, in Section 3, we deduce approxima-
tions for the tail probabilities. The accuracy of our approach is
evaluated extensively in Section 4 and the importance of the model
is discussed in Section 5. Finally, we draw some conclusions in
Section 6.

2. Model description

We consider a discrete-time queueing model. As such, the time
axis is divided into fixed-length contiguous time periods, called
slots. Customer arrivals during consecutive slots are modelled by
a sequence of independent and identically distributed (IID)
random variables, with common random variable A whose prob-
ability generating function (PGF) is denoted by A(z). The mean
value, often referred to as mean arrival rate, is characterized by l
and is by definition equal to A0ð1Þ (we use primes to indicate
derivatives). Customers queue up in awaitance of service in a
queue of infinite size. The server can serve batches containing up
to c customers. We refer to c as the server capacity. Whenever the
server is available at the beginning of a slot and finds less than l

customers (lrc), service is initiated with probability b and
postponed with probability 1�b. If, on the other hand, at least l

customers are present, a service is initiated of a batch containing
a maximum of c customers. Service times are synchronized with
respect to the slot boundaries, i.e., services always start and end
at slot boundaries. Hence, service times last an integral number of
slots. The service time of a batch containing n customers is
represented by Tn and its corresponding PGF by Tn(z). Under these
assumptions, T0ðzÞ describes the length of a server interruption in
an empty system. Finally, the service discipline is first-come, first-
served (FCFS).

The results in this paper are valid under the following
assumptions:

Assumption 1. The load r9lT 0cð1Þ=co1.

This ensures stability of the system.

Assumption 2. The radius of convergence of each PGF is strictly
larger than 1.

This implies that all order moments are finite and can be
calculated by means of the moment generating property of PGFs.
We designate the radius of convergence of some random variable
X by RX . In addition, we define Rn as the radius of convergence of
TnðAðzÞÞ and R9minfRn : 0rnrcg and RT9minfRTn

: 0rnrcg.

Assumption 3. RnrRA, n¼ 0, . . . ,c.

It is worth mentioning that we believe that this assumption is
actually a fact, as we have not been able to construct one
counterexample.2 However, as it is tedious to prove that
RnrRA, we mention it as an assumption.

Assumption 4. zc�TcðAðzÞÞ is aperiodic, i.e., the highest common
factor of the set of integers ffcg [ fnAN : ðdn=dznÞTc ðAðzÞÞ9z ¼ 0

a0gg equals 1.

This assumption ensures that the c unknown boundary prob-
abilities d(n), n¼ 0, . . . ,c�1 (see further) are solutions of a set of c

linear independent equations. We thus exclude some special
cases (for instance when c¼ 2k, l¼c, b¼ 0 and AðzÞ ¼

P1
n ¼ 0

Pr½A¼ 2n�z2n) in order to present a general solution technique.

Assumption 5. limzmRTcðAðzÞÞ=zc 41.

This assumption will assure that zc�TcðAðzÞÞ has a zero in the
interval �1,R½. We will show that this entails that the tail
probabilities of the customer delay are not dominated by a
specific dominant singularity of TcðAðzÞÞ (if any). Although we
thus exclude some PGFs TcðAðzÞÞ, the commonly adopted PGFs
satisfy this assumption. The main advantage is that we can
present a general solution whereas otherwise an ad hoc approach
would have to be adopted for each PGF TcðAðzÞÞ.

3. Deduction of approximation formulas

The delay of a randomly tagged customer is defined as the
length of the time period, starting at the end of the slot of arrival,
until the customer’s batch starts receiving service. It can thus be
expressed as an integral number of slots.

In [22] for a system without timer mechanism, we have
decomposed the delay W of a randomly tagged customer as the
maximum of two parts:

W ¼maxðW1,W2Þ:

The queueing delay W1 is the time, starting at the beginning of
the slot following the slot wherein the tagged customer arrives
(i.e., at the same instant that W starts), to serve batches of
customers that have arrived before the tagged customer. The
postponing delay W2 is the time, starting at the same moment as
the queueing delay, until the batch with the tagged customer
contains at least l customers. In this particular case, the actual
service of a customer can start only if all preceding batches have
been processed (FCFS) and if its own batch contains at least l

customers; hence the equation W ¼maxðW1,W2Þ.
It seems natural to follow a similar approach, by simply

redefining W2 somewhat to include the timer mechanism. The
postponing delay would then represent the time, starting at the
same moment as the queueing delay, until the batch containing
the tagged customer contains at least l customers or until the

2 When trying to construct a counterexample, one should verify that the

constructed A(z) and Tn(z) are actually PGFs, by checking the normalization

condition and verifying that the coefficients in the Taylor series expansions of

A(z) and Tn(z) about z¼0 are probabilities.
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