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a b s t r a c t

The well-known column generation scheme is often an efficient approach for solving the linear relaxation of

large-size Covering Integer Programs (CIP). In this paper, this technique is hybridized with an extension of the

best-known CIP approximation heuristic, taking advantage of distinct criteria of columns selection. This

extension uses fractional optimization for solving pricing subproblems. Numerical results on a real-case

transportation planning problem show that the hybrid scheme accelerates the convergence of column

generation both in terms of number of iterations and computational time. The integer solutions generated at

the end of the process can also be improved for a significant proportion of instances, highlighting the

potential of diversification of the approximation heuristic.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Covering Integer Programming (CIP) is an NP-hard minimization
problem that models real-case applications like location problems [8].
It can also appear as the master problem of a Dantzig–Wolfe
decomposition in other applications, e.g. transportation problems
[1,29] and cutting stock problems [12]. This paper is devoted to the
second category of large-size covering integer programs. For solving
the linear relaxation of these problems, the column generation
method is an efficient approach when the pricing subproblem can
be solved in reasonable time. However, as it only provides a lower
bound of the optimal solution, it is often combined with other solving
approaches to obtain integer solutions: exact methods (e.g. branch-
and-bound and cuts) or approximation methods (e.g. heuristics,
metaheuristics and Lagrangian methods) [22,17,30,19,3]. We will
denote by CGþMIP the two-stage process that consists in, firstly,
solving the linear relaxation of the master problem by Column
Generation (CG), and secondly, running a Mixed-Integer Program-
ming (MIP) solver on the last restricted master problem in order to
get integer solutions. Various improvements of column generation
have been proposed both for the general process (e.g. initialization,
resolution of the master problem and subproblems, choice of inserted
columns) as for the integer resolution scheme (e.g. branch-and-price,

column generation combined to heuristics or metaheuristics)
[2,26,27,16,5]. Since the goal of the paper is not to design the best-
possible solving method for a specific problem but to show the added
value of hybridization in column generation before branching, we
keep a basic MIP branching scheme without exploring branch-and-
price techniques.

The main contribution of this paper is an original and efficient
hybridization of CG with (i) the greedy heuristic of Dobson [10],
denoted by Gr, which achieves a logarithmic approximation ratio for
CIP, and (ii) an extension of Gr to large-size CIP problems, denoted by
Grþ Although the principle of such an extension was already
described in [6], no paper has ever analyzed the fractional subpro-
blems associated with Grþ as it is done in this paper, nor studied how
to implement it.

Numerical experiments are conducted on real-case instances
of a locomotive assignment problem. Both CGþMIP and Grþ are
first evaluated separately on the problem. Although the greedy
heuristic does not generally have outstanding performance in
terms of solution quality, it shows however an interesting
potential for generating diversified columns with controlled
quality and running time. This is a strong motivation to design
strategies for an efficient hybridization of the two resolution
approaches. This hybrid scheme has two objectives:

1. Accelerate the column generation process that solves the
linear relaxation of the CIP master problem,

2. output an integer solution that is strictly better than both the
CGþMIP solution and the Grþ solution.
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The paper is organized as follows. In Section 2, we briefly
present the CIP formulation and describe the standard Column
Generation and Gr principles. Section 3 presents the Grþ exten-
sion of Gr to large-size CIP, and makes the link between the
heuristic subproblem and fractional optimization. The generic
hybridization scheme is described in Section 4. Section 5
describes the transportation planning application and analyses
the greedy subproblem tractability. Section 6 provides and
analyses computational results on the real-case problem for
CGþMIP and Grþ tested separately, then for hybridization.
Different hybridization strategies are proposed and evaluated.
Final conclusions are given in Section 7.

2. Existing solving approaches for CIP

We first introduce in this section the formulation of CIP
programs. We recall then the column generation principles on
CIP. We finish by a brief description of Gr.

2.1. CIP formulation

Given a matrix A of integer non-negative coefficients
aijAN0,iA I¼ f1, . . . ,ng,jA J¼ f1, . . . ,mg, positive vectors cANm

0 ,
and bANn

0, a covering integer program CIP consists in finding a
vector yANm

0 minimizing the cost function cy while satisfying
covering constraints AyZb. The mathematical formulation of CIP

is given as follows:

ðCIPÞ

min z¼
P
jA J

cjyj

s:t
P
jA J

aijyjZbi 8iA I

yjAN0 8jA J

8>>>><
>>>>:

ð1Þ

The CIP defined above is sometimes called multiset multicover

problem [28] or integer covering problem [11,6]. The well-known
set covering problem corresponds to the case when aijAf0,1g for
iA I,jA J, bi¼1 for all iA I, and yjAf0,1g for jA J.

2.2. Column generation for large-size CIP

In many applications formulated as a CIP, 9J9 is a very large
number which can be an exponential function of n¼ 9I9. For
example, J can represent the set of all paths satisfying given
constraints in a graph, as for the transportation planning applica-
tion tested in this paper. Complete enumeration of J is then
impossible for solving these problems.

Column Generation (CG) is a resolution scheme particularly
suited to solve the linear relaxation of these large-size problems.
It is an extension of the Simplex algorithm to the case when J is
very large which implies a non-trivial computation of reduced
costs. CG is typically applied when the subproblem has a
particular combinatorial structure that makes it easy to solve
despite the exponential size of J.

The linear relaxation of the (CIP)-formulation is called the
Master Problem (MP). As J is very large, the CG scheme only
generates a subset of columns of J. It iteratively solves the MP
restricted to a subset of columns, called Restricted Master
Problem (RMP). At each iteration, the RMP is enlarged by adding
new columns with negative reduced costs output by a pricing
subproblem. This subproblem generates the column with mini-
mum reduced cost that will enter the basis, i.e.,

min
jA J

cj�
X
iA I

uiaij

( )

where u¼ ðuiÞiA I denotes the vector of dual variables associated
with the covering constraints (1). As mentioned earlier, this
subproblem should be tractable in reasonable time despite the
size of J.

If at some iteration, the pricing subproblem outputs no column
with negative reduced cost, then the current solution is optimal
for the MP (this only holds if the subproblem is solved to
optimality).

The approach CGþMIP developed in this paper is a two-stage
process. The first stage uses the above CG process to solve the
linear relaxation of the CIP master problem. At the second stage, a
MIP solver is applied to the last RMP for getting integer solutions.

We describe the Gr heuristic that provides the best-possible
approximation ratio, and its extension to large-size CIP in the
following section.

2.3. Greedy approximation heuristic

When J is given explicitly, the greedy heuristic Gr designed
by Dobson [10] is the best approximation heuristic known for CIP.

Gr is a generalization of the greedy heuristic for the set covering
problem analyzed by Chvat�al [4]. It achieves a logarithmic
approximation ratio equal to

H max
jA J

X
iA I

aij

 ! !

where HðkÞ ¼
Pk

i ¼ 1 1=i is the harmonic series.
At each iteration, algorithm Gr selects a column jA J with

minimum ratio cj=
P

iA Iaij. Then the number of units to cover bi is
updated by subtracting the number of units covered at the
current iteration, and all aij that become higher than the updated
value of bi are set to this value. This process is reiterated until all
demand units are covered. It is formally described as follows:

Algorithm 1. Greedy algorithm Gr for CIP [10].

� Input :

JGr’|, y’0

� while ba0 do

1: jn’arg min
jA J

cjP
i A I

aij

2: yjn’yjnþDjn with Djn ¼min
iA I

bi

aijn

$ %

3: JGr’JGr [ fj
n
g

4: bi’bi�Djn aijn 8iA I

5: aij’minðaij,biÞ 8iA I,jA J

666666666666664
� output JGr

In the next section, Grþ , the extension of Gr to the case when
9J9 is an exponential function of 9I9 is analyzed. For such large-size
CIP, as for the standard CG process and under some conditions, Gr

can be used efficiently despite the size of J.

3. Extension of Gr to large size CIP using fractional
optimization

To get the column of minimum ratio (step 1. of algorithm Gr),
one has to evaluate cj=

P
iA Iaij for every jA J and then find

minjA J cj=
P

iA Iaij. Grþ is the extension of Gr to a large-size context
where explicit enumeration of J is impossible. Crama and Van de
Klundert [6] called it greedy column generation. However, we prefer
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