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a b s t r a c t

The Capacitated Arc Routing Problem (CARP) stands among the hardest combinatorial problems to

solve or to find high quality solutions. This becomes even more true when dealing with large instances.

This paper investigates methods to improve on lower and upper bounds of instances on graphs with

over 200 vertices and 300 edges, dimensions that, today, can be considered of large scale. On the lower

bound side, we propose to explore the speed of a dual ascent heuristic to generate capacity cuts. These

cuts are next improved with a new exact separation enchained to the linear program resolution that

follows the dual heuristic. On the upper bound, we implement a modified Iterated Local Search

procedure to Capacitated Vehicle Routing Problem (CVRP) instances obtained by applying a transfor-

mation from the CARP original instances. Computational experiments were carried out on the set of

large instances generated by Brand~ao and Eglese and also on the regular size sets. The experiments on

the latter allow for evaluating the quality of the proposed solution approaches, while those on the

former present improved lower and upper bounds for all instances of the corresponding set.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Capacitated Arc Routing Problem (CARP) can be defined as
follows. Let G¼ ðV ,EÞ be an undirected graph, where V and E are
the vertex and edge set respectively. There is a special vertex
called depot (usually vertex 0) where a set I of identical vehicles
with capacity Q is located. Each edge in E has a cost c : E-Zþ and
a demand d : E-Zþ0 . Let ER ¼ feAE : de40g be the set of required
edges. The objective is to find a set of routes, one for each
available vehicle, which minimizes the total traversal cost satisfy-
ing the following constraints: (i) every route starts and ends at
the depot; (ii) each required edge must be visited exactly once;
(iii) the total load of each vehicle must not exceed Q.

This problem can arise in many real life situations. According
to Wølhk [1], some of the applications studied in the literature are
garbage collection, street sweeping, winter gritting, electric meter
reading and airline scheduling.

The CARP is NP-hard and it was first proposed by Golden and
Wong in 1981 [2]. Since then, several solution approaches were
proposed in the literature involving algorithms based on heur-
istics, metaheuristics, cutting plane, column generation, branch-
and-bound, among others.

In 2003, Belenguer and Benavent [3] proposed a mathematical
formulation for the CARP which makes use of two families of cuts
as constraints, the odd-edge cutset cuts and the capacity cuts. With
this formulation and other families of cuts, they devised a cutting
plane algorithm in order to obtain good lower bounds for well-
known CARP instance datasets. Before this work, the best known
CARP lower bounds were found mainly by heuristic algorithms.

Since the work of Belenguer and Benavent, the best known
lower bounds were found using exact algorithms. In 2004, Ahr [4]
devised a mixed-integer formulation using an exact separation of
capacity cuts. However, due to memory limitations, the author
did not manage to apply his algorithm in all known instances,
which illustrates the difficulty in separating such cuts.

The main drawback of the exact approaches is the fact of being
prohibitive on larger instances. Up to this date, the larger instance
solved to optimality is the egl-s3-c from the eglese instance
dataset, proposed almost 20 years ago by Li [5] and Li and
Eglese [6]. This instance has 140 vertices and 190 edges, 159 of
these required ones, and it was solved for the first time
by Bartolini et al. in 2011 [7] using a cut-and-column based
technique combined with a set partitioning approach. Other
recent works using exact approaches which solved to optimality
instances from eglese instance dataset are those of Bode and
Irnich [8], which used a cut-first branch-and-price-second
exploiting the sparsity of the instances, and Martinelli et al. [9],
which used a branch-cut-and-price with non-elementary routes.

In their work of 2008, Brand~ao and Eglese [10] proposed a new
set of CARP instances, called egl-large, containing 255 vertices,
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375 edges and 347 or 375 required edges. They ran the path-
scanning heuristic from Golden [11] and compared the results
with their deterministic tabu search, giving the first upper bounds
for this instance dataset. In 2009, Mei et al. [12] improved these
upper bounds using a repair-based tabu search algorithm. To the
best of our knowledge, there are no lower bounds reported in the
literature for this instance dataset.

The contributions of this paper are twofold: (i) provide a meth-
odology capable of obtaining good lower bounds and (ii) improve the
existing upper bounds by means of a heuristic algorithm; both
approaches with emphasis on large scale instances. In order to find
the first lower bounds for the egl-large instance dataset, we devise a
dual ascent heuristic to speed up a cutting plane algorithm which uses
a new exact separation of the capacity cuts and a known exact
separation of the odd edge cutset cuts. The upper bounds are found
using a known transformation to the Capacitated Vehicle Routing
Problem (CVRP) and then applying an Iterated Local Search (ILS) based
heuristic. We report new improved upper bounds for all 10 instances
of the egl-large set.

The remainder of the paper is organized as follows. Section 2
presents the mathematical formulation needed for the dual
ascent heuristic and the known exact separation algorithms.
Section 3 introduces a new exact separation for the capacity cuts.
Section 4 describes our dual ascent heuristic and how it generates
cuts to hot-start the cutting plane algorithm. Section 5 explains
the known transformation to the CVRP and the ILS heuristic.
Section 6 presents extensive computational experiments. Finally,
conclusions are given in Section 7.

2. Mathematical formulation

2.1. The one-index formulation

In their work, Belenguer and Benavent [3] developed a CARP
formulation, usually referred as the One-Index Formulation [13].
In contrast to other approaches, this formulation only makes use
of variables representing the deadheading of an edge. An edge is
deadheaded when a vehicle traverses this edge without servicing
it. In addition, all vehicles are aggregated. Due to these simplifica-
tions, this formulation is not complete, i.e., it may result in an
infeasible solution for the problem. Moreover, even when a given
solution is feasible, it is a very hard task to find a complete
solution. Nevertheless, these issues do not prevent such formula-
tion of giving very good lower bounds in practice.

For each deadheaded edge e, there is an integer variable ze

representing the number of times the edge e was deadheaded by
any vehicle. Let SDV\f0g be a subset of vertices not including the
depot. We can define dðSÞ ¼ fði,jÞAE : iAS4j =2 Sg as being the set
of edges which have one endpoint inside S and the other outside
S. Similarly, dRðSÞ ¼ fði,jÞAER : iAS4j =2 Sg is the set of required

edges which have one endpoint inside S and the other outside S.
Analogously, EðSÞ ¼ fði,jÞAE : iAS4jASg and ERðSÞ ¼ fði,jÞAER :

iAS4jASg are the sets of edges with both endpoints inside S.
Given a vertex set S, with 9dRðSÞ9 odd, it is easy to conclude that

at least one edge in dðSÞmust be deadheaded because each vehicle
entering the set S must leave and return to the depot. This is the
principle of the odd-edge cutset cuts:X
eAdðSÞ

zeZ1 8SDV\f0g, 9dRðSÞ9odd ð1Þ

Furthermore, we can define a lower bound on the number of
vehicles needed to meet the demands in dRðSÞ [ ERðSÞ as
kðSÞ ¼ d

P
eAdRðSÞ[ERðSÞ

de=Qe. These k(S) vehicles must enter and
leave the set S, in such a way that at least 2kðSÞ�9dRðSÞ9 times
an edge in dðSÞwill be deadheaded. If this value is positive, we can

define the following capacity cut:X
eAdðSÞ

zeZ2kðSÞ�9dRðSÞ9 8SDV\f0g ð2Þ

Since the left-hand side of both (1) and (2) are the same, they can
be represented in the formulation by only using a single constraint.
This can be done by introducing aðSÞ, which is defined as follows:

aðSÞ ¼
maxf2kðSÞ�9dRðSÞ9,1g if 9dRðSÞ9is odd,

maxf2kðSÞ�9dRðSÞ9,0g if 9dRðSÞ9is even

(
ð3Þ

These two families of cuts define the one-index formulation:

Min
X
eAE

ceze ð4Þ

s:t:
X

eAdðSÞ

zeZaðSÞ 8SDV\f0g ð5Þ

zeAZþ0 8eAE ð6Þ

The objective function (4) minimizes the cost of the dead-
headed edges. Constraints (5) combine cuts (1) and (2). In order to
obtain the total cost for the problem, one needs to add the costs of
the required edges (

P
eAER

ce) to the solution cost.

2.2. Exact odd-degree cutset cuts separation

The exact separation of the odd-degree cutset cuts (1) can be
done in polynomial time using the Odd Minimum Cutset Algorithm

of Padberg and Rao [14]. We believe that the application of the
algorithm is not immediate and therefore we decided to provide a
brief description of the separation routine, which is as follows.

The odd minimum cutset algorithm creates a Gomory-Hu Tree

[15] using just the vertices with odd 9dRðfvgÞ9, called terminals.
This tree represents a maximum flow tree, i.e., the maximum flow
of any pair of vertices is represented on this tree. In order to
obtain the maximum flow between a pair of vertices, one only
needs to find the least cost edge on the unique path between
these two vertices. This edge also represents the minimum cut
between them. Hence, to determine a violated odd-degree cutset
cut, one needs to find any edge with a value less than one. This
can be done during the execution of the algorithm, but we prefer
to run it until the end to find as many violated cuts as possible.

This whole operation can be done running at most 9V9�1 times
any maximum flow algorithm. In this work we use the Edmonds–

Karp Algorithm [16], which takes Oð9V9 � 9E92
Þ, resulting in a total

complexity of Oð9V92
� 9E92

Þ.

2.3. Ahr’s exact capacity cut separation

The only exact separation routine for the capacity cuts avail-
able in the CARP literature was proposed by Ahr [4] in 2004. This
algorithm runs a mixed-integer formulation several times, one for
each possible number of vehicles. This approach was inspired on
the exact separation of the capacity cuts for the CVRP proposed by
Fukasawa et al. [17]. In Ahr’s work, this separation was used to
identify violated cuts on a complete formulation for the CARP.
As we only wish to separate the cuts, we changed the objective
function of the mixed-integer formulation to use it with the one-
index formulation.

The formulation is composed by three types of variables. The
first one is the binary variable he, 8eAE, which is 1 when exactly
one endpoint of e is inside the cut (what we call cut edge) and
0 otherwise. The second variable is the binary variable fe, 8eAE,
which is 1 when both endpoints of e are inside the cut (called
inner edge) and 0 otherwise. The last variable is the binary
variable si, 8iAV , which is 1 if vertex i is inside the cut and
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