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a b s t r a c t

We have investigated the time-dependent regime of a two-dimensional metamagnetic model at its tri-
critical point via Monte Carlo simulations. First, we obtained the temperature and magnetic field corre-
sponding to the tricritical point of the model by using a refinement process based on optimization of the
coefficient of determination in the log–log fit of magnetization decay as a function of time. With these es-
timates in hand, we obtained the dynamic tricritical exponents θ and z and the static tricritical exponents
ν and β by using the universal power-law scaling relations for the staggered magnetization and its mo-
ments at an early stage of the dynamic evolution. Our results at the tricritical point confirm that thismodel
belongs to the two-dimensional Blume–Capelmodel universality class for both static and dynamic behav-
iors, and they also corroborate the conjecture of Janssen and Oerding for the dynamics of tricritical points.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the study of phase transitions and critical phenomena, sys-
tems which exhibit multicritical behavior have been the subject
of a great number of works. Theoretically, the tricritical phase
transition of the Blume–Capel [1] model is one of the most stud-
ied. However, there are other models showing the existence of
suchmulticritical points, for instance, themetamagneticmodel [2],
the Blume–Capel model with antiferromagnetic exchange interac-
tion and external magnetic field added [3], and the random-field
Ising model [4]. In order to investigate these phenomena, several
techniques have been employed, including series expansions [5],
linked-cluster expansion [6], mean-field theory [7], renormaliza-
tion group [8–11], transfer matrix [12–15], Monte Carlo simula-
tions [16–19], and Monte Carlo renormalization group methods
[20–22]. Experimentally, the phase transitions of metamagnetic
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systems such as in the compound FeBr2 [23,24] have also been
studied in order to understand the tricritical behavior that appears
as a consequence of a competition between the antiferromagnetic
and ferromagnetic coupling constants present in this magnetic
system.

The two-dimensional spin- 12 metamagneticmodel is defined by
the Hamiltonian

H = J1

nn

σiσj − J2

nnn

σiσk + H


i

σi, (1)

where J1, J2 > 0 and σi = ±1 are the spin variables. The model
considered has two sublattices: the first sum extends over all
nearest-neighbor pairs (intersublattice) and the second over all
next-nearest-neighbor pairs (intrasublattice), respectively. The pa-
rameters J1 and J2 are the antiferromagnetic and ferromagnetic
coupling constants, respectively, and H is the external magnetic
field.

The order parameter of the model is the staggered magnetiza-
tion, conveniently defined by

M(t) =
1
N

L
i=1

L
j=1

(−1)i+jσi,j = M1(t) − M2(t), (2)
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where N = L2, L being the linear size of the square lattice. Here,
M1(t) =

2
N

L
i=1

L
j=1 σi,jδmod(i+j,2),0 and M2(t) =

2
N

L
i=1

L
j=1

σi,jδmod(i+j,2),1 denote the magnetizations of the respective sublat-
tices. This definition shows that there is an inversion of the mean-
ing of ordered and disordered state. In order to obtain an ordered
state, it is necessary to occupy the sites of the lattice with spins
+1 (−1) where the sum i + j is odd (even), or vice versa. On the
other hand, null magnetization may be obtained when all sites are
occupied with spins of the same kind.

In contrast to the Blume–Capel model, the phase diagram of the
metamagnetic model is not yet completely understood. This is due
to the controversial results between the experimental and theoret-
ical works concerning the phase transitions of the system. If, on the
one hand, this model exhibits a rich phase diagram in the temper-
ature–field plane with a line of second-order phase transitions, a
line of first-order phase transitions, and a tricritical point which is
located at the point where the first-order and second-order transi-
tion lines join each other with the same slope, on the other hand,
mean-field theory [25] predicts that such a tricritical point de-
pends on the value of the ratio between the coupling constants.
The theory only predicted the existence of a tricritical point for R =

J2/J1 > 3/5, while for R < 3/5 in the mean-field approximation
themodel exhibits two Ising-like critical points: a critical endpoint
corresponding to a point that ends at the first-order line coming
from the second-order line and a double critical endpoint (bicriti-
cal) that corresponds to the terminal point of the first-order transi-
tion line. Although for the three-dimensionalmetamagneticmodel
Herrmann et al. [26] showed via Monte Carlo (MC) renormaliza-
tion group theory that such critical endpoints exist, experimen-
tal works have not found those points in any real metamagnetic
system, and also there is no evidence of such points for the two-
dimensional metamagnetic systems as verified in different works
(see, for example, [13,27]). Similarly, Santos and Figueiredo [28]
by using a master equation formalism in the context of dynamical
pair approximation, also in two dimensions, did not find any evi-
dence for the decomposition of the tricritical point into the critical
and bicritical endpoints as predicted by mean-field theory. More
recently, other authors exclude the possibility of existence of these
two critical endpoints even for three dimensions: Geng et al. [29],
by using effective-field theory, showed that there is no fourth-
order critical point or reentrant phenomenon in the phase diagram.
Finally, other authors [30], by performingMC simulations, showed
that there is no evidence of such a decomposition in a critical end-
point and a bicritical endpoint, and such simulations produce a tri-
critical behavior even for a coupling ratio as small as R = 0.01.

Although previous estimates of the critical exponents for this
model support the assertion that it belongs to the same universal-
ity class as the Blume–Capel model, the non-equilibrium critical
behavior of this system has not been completely investigated to
date. Santos and Figueiredo [31] studied a similar layered meta-
magnetic model far from equilibrium by using short-time Monte
Carlo simulations. They estimated the static critical exponents β
and ν and the dynamic critical exponent z on the continuous tran-
sition line, but the tricritical exponents were not obtained. They
also showed that, although the critical exponent ν remains the
same along the continuous transition line, the exponent β departs
from the expected value as we approach the tricritical point of the
model.

Our goal in this work was to study the non-equilibrium critical
dynamics of a metamagnetic model through short-time Monte
Carlo simulations. In the next section, we estimate the tricritical
parameters of the model (temperature and magnetic field) by
using a refinement process based on optimization of the coefficient
of determination in the log–log fit of magnetization decay as a
function of time. With these estimates in hand, we also obtain
the dynamic tricritical exponents θ and z and the static tricritical

exponents ν and β by using the universal power-law scaling
relations for the staggered magnetization and its moments at
an early stage of the dynamic evolution. Our conclusions are
presented in Section 3.

2. Short-time critical dynamics and results

The study of the dynamic critical properties of statistical sys-
temshas been a subject of considerable interest in non-equilibrium
physics; see the works by Janssen, Schaub, and Schmittmann [32],
and Huse [33]. By using, respectively, renormalization group tech-
niques and numerical calculations, these authors showed that uni-
versality and scaling behavior are already present in systems since
their early stages of time evolution after quenching fromhigh tem-
peratures to the critical one. As a result, the study of the critical
properties of statistical systems became in some sense simpler, be-
cause they allow one to circumvent the well-known problem of
critical slowing down, characteristic of the long-time regime.

The dynamic scaling relation obtained by Janssen et al. for the
kth moment of the magnetizationM , extended to systems of finite
size [34,35], is written as

⟨Mk
⟩(t, τ , L,m0) = b−kβ/ν

⟨Mk
⟩(b−z t, b1/ντ , b−1L, bx0m0), (3)

where t is the time, b is an arbitrary spatial rescaling factor, τ =

(T − Tc) /Tc is the reduced temperature, and L is the linear size of
the lattice. Here, the operator ⟨· · ·⟩ denotes averages over different
configurations due to different possible time evolution from each
initial configuration compatible with a given initial magnetization
m0. The exponents β and ν are the equilibrium critical exponents
associated to the order parameter and the correlation length,
respectively, and z is the dynamic exponent characterizing time
correlations at equilibrium.

After choosing the scaling b−1L = 1 at T = Tc (τ = 0), and
k = 1,we obtain ⟨M⟩(t, L,m0) = L−β/ν

⟨M⟩(L−z t, Lx0m0). Denoting
u = tL−z and w = Lx0m0, one has ⟨M⟩(u, w) = ⟨M⟩(L−z t, Lx0m0).
The derivative with respect to L is
∂⟨M⟩

∂L
= (−β/ν)L−β/ν−1

⟨M⟩(u, w)

+ L−β/ν


∂⟨M⟩

∂u
∂u
∂L

+
∂⟨M⟩

∂w

∂w

∂L


,

where ∂u/∂L = −ztL−z−1 and ∂w/∂L = x0m0Lx0−1. In the limit
L → ∞, ∂L⟨M⟩ → 0, one has x0w

∂⟨M⟩

∂w
− zu ∂⟨M⟩

∂u − β/ν⟨M⟩ = 0.
The separability of the variables u and w in ⟨M⟩(u, w) = M1(u)
M2(w) leads to x0wM ′

2/M2 = β/ν + zuM ′

1/M2, where the prime
means the derivative with respect to the argument. Since the left-
hand side of this equation depends only on w and the right-hand
side depends only on u, they must be equal to a constant c. Thus,
M1(u) = u(c/z)−β/(νz) and M2(w) = wc/x0 , resulting in ⟨M⟩ (u, w)

= mc/x0
0 Lβ/ν t(c−β/ν)/z . Returning to the original variables, one has

⟨M⟩(t, L,m0) = mc/x0
0 t(c−β/ν)/z .

On the one hand, choosing c = x0 and denoting θ = (x0 −

β/ν)/z, at criticality (τ = 0), we obtain the algebraically behavior
of the magnetization:

⟨M⟩(t) ∼ m0tθ . (4)

This can be observed by a finite time scaling b = t1/z , Eq. (3),
at critical temperature (τ = 0), which leads to ⟨M⟩ (t,m0) =

t−β/(νz)
⟨M⟩(1, tx0/zm0). Defining x = tx0/zm0, an expansion of the

averaged magnetization around x = 0 results in ⟨M⟩(1, x) = ⟨M⟩

(1, 0) + ∂x⟨M⟩|x=0x + O(x2). By construction, ⟨M⟩(1, 0) = 0,
since x = tx0/zm0 ≪ 1 and ∂x⟨M⟩|x=0 is a constant. Discarding
the quadratic terms, we obtain the expected power-law behavior
⟨M⟩m0 ∼ m0tθ , which is valid only for a characteristic time scale
t < tmax ∼ m−z/x0

0 .
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