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a b s t r a c t

In this paper, a true-direction flux reconstruction of the second-order quiet direct simulation (QDS-
2N) Smith et al. (2009) [3] as an equivalent Euler equation solver, called QDS-N2, is proposed. Because
of the true-directional nature of QDS, where volume-to-volume (true-direction) fluxes are computed,
as opposed to fluxes at cell interfaces as employed by traditional finite volume schemes, a volumetric
reconstruction is required to reach a totally true-direction scheme. The conserved quantities are
permitted to vary (according to a polynomial expression) across all simulated dimensions. Prior to the
flux computation, QDS particles are introduced using properties based on weighted moments taken over
the polynomial reconstruction of the conserved quantity fields. The resulting flux expressions are shown
to exactly reproduce the existing second-order extension for a one-dimensional flow, while providing
a means for true multi-dimensional reconstruction. The new reconstruction is demonstrated in several
verification studies. These include a shock–bubble interaction problem, an Euler-four-shock interaction
problem, and the advection of a vortical disturbance. These results are presented, and the increased
computation time and the effect of higher-order extension are discussed in this paper. The results show
that the proposedmulti-dimensional reconstruction provides a significant increase in the accuracy of the
solution.We show that, despite the increase in the computational expense, the computational speed of the
proposedQDS-N2 method is several times higher than that of the previously proposedQDS-2N scheme for
a fixed degree of numerical accuracy, at least, for the test problemof the advection of vertical disturbances.

© 2013 Published by Elsevier B.V.

1. Introduction

There are a number of approaches for the simulation of gas
flows, depending on the nature and level of rarefaction of the
flow. Computational fluid dynamics (CFD) typically uses the finite
volume method to solve a set of discretized governing equations,
usually the Euler or Navier–Stokes equations for continuum
flows. Contemporary finite-volume CFD divides the computational
domain into a grid of cells, and fluxes of mass, momentum, and
energy are calculated through the interfaces between these cells.
This technique may suffer from the major disadvantage that the
poor alignment of the grid with the flow field may result in large
errors for some important flows (e.g., explosive blast wave), since
fluxes can only occur between cells that share an interface, i.e.,
no reflection of the true-direction nature of the gas flow. Thus,
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CFD requires a careful grid design to ensure accurate results,
convergence, and stability.

Since the development of direct simulationMonte Carlo (DSMC)
by Bird [1] for statistically solving the Boltzmann equation, a
large number of continuum kinetic theory-based schemes have
emerged following a similar spirit. In 1980, Pullin [2] proposed
the equilibrium flux method (EFM) as an analytical equivalent to
the equilibrium particle simulation method (EPSM), which is a di-
rect simulation method where particles are forced to assume the
Maxwell–Boltzmann equilibrium velocity probability distribution
function instead of performing collisions. Later, Smith et al. [3]
proposed a general form of the EFM method known as the true-
direction equilibrium flux method (TDEFM), which captures rel-
atively accurately the transport mechanism employed by EPSM.
Fluxes calculated by TDEFM represent the true analytical solution
to the molecular free flight problem, under the assumptions of
thermal equilibrium and uniformly distributed quantities in each
cell.
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Albright et al. [4] developed a numerical scheme for the solution
of the Euler equations, known as the quiet direct simulationMonte
Carlo (QDSMC) method. In this method, the integrals encountered
in the TDEFM formulation are replaced by approximations using
Gaussian numerical integration, effectively replacing the continu-
ous velocity distribution function with a series of discrete veloc-
ities. The method was later renamed the quiet direct simulation
(QDS) method, because of the lack of stochastic processes, and was
extended to second-order spatial accuracy [5]. The lack of complex
mathematical functions results in a computationally very efficient
scheme with a considerably higher performance than EFM while
maintaining the advantages of true-directional fluxes like TDEFM.

Because of the assumption of unrestricted motion during free
flight, each of the abovementioned kinetic solvers has a large
amount of (cell-size-based) numerical diffusion. To combat this
dissipation, a common strategy, employed in conventional finite
volume methods, is to apply the higher-order reconstruction of
properties or fluxes.Macrossan [6] applied EFMusing higher-order
spatial extensions, while Smith [7] attempted the analytical in-
clusion of gradients into true-direction volume-to-volume fluxes,
only to find that the complete analytical inclusion of gradient terms
in the TDEFM flux expressions is impossible. Smith et al. [5] re-
duced the numerical diffusion by applying ‘‘simplified’’ flux recon-
struction at the interface that improves the original QDS to be
almost second order in spatial accuracy; this method is called
QDS-2N.

In this paper, we extend the second-order QDS algorithm (QDS-
2N) [5] to higher-order reconstruction through the true-direction
polynomial multi-dimensional reconstruction of conserved prop-
erties across each cell width; this method is called QDS-N2. The
net fluxes are computed through the individual contributions of
QDS particles, computed by taking moments over the polynomial
reconstruction. The particle properties are updated, considering
the average value of the conserved quantity between the region
bounds, which are required in translational directions and the
application of splitting. The fluxes of conserved properties are cal-
culated by a sum of weighted moments over the polynomial spa-
tial reconstruction of mass, momentum, and energy across the cell
width. The verification simulations of four two-dimensional cases
are carried out to show the improved accuracy of the proposed
QDS-N2 scheme for inviscid gas flow simulations.

2. Numerical method

2.1. Quiet direct simulation (QDS)

The normal random variable N(0, 1) is defined by the probabil-
ity density:

p(x) =
e−x2/2

√
2π

. (1)

By using a Gaussian quadrature approximation, the integral of
Eq. (1) over its limits can be approximated by:
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where wj and qj are the weights and abscissas of the Gaussian
quadrature (also known as the Gauss–Hermite parameters), and N
is the number of terms. The abscissas are the roots of the Hermite
polynomials, which can be defined by the recurrence equation:

Hn+1(q) = 2qHn − 2nHn−1 (3)

whereH−1 = 0, andH0 = 1. The weights can be determined from:
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. (4)

The net fluxes ofmass,momentumand energy of a cell are given
by the sum of individual flux contributions from all the particles
flowing in and out as follows:
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where F J
MASS , F

J
MOM and F J

ENG is the individual mass flux, individual
momentum flux and individual energy flux from particle J respec-
tively, M and N is the number of inflow and outflow particles re-
spectively into the cell under consideration. Each of the individual
contributions (with first order spatial accuracy) can be described
by the expressions, e.g., in one-dimensional case:
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where the particle massmJ , particle velocity vJ , and particle inter-
nal energy εJ are expressed as:

mJ =
ρ∆xwJ
√

π
vJ = u +

√
2σqJ

εJ =
(ξ − Ω) σ 2

2

(7)

where ρ is the density, u is the bulk (or mean) flow velocity, and
σ = (RT )1/2 in a given source cell. Note R is the universal gas con-
stant, and T is the gas temperature. The total number of degrees of
freedom ξ is defined as ξ = 2(γ − 1)−1 where γ is the specific
heat ratio (= Cp/Cv), and Ω is the number of simulated degrees
of freedom (e.g., Ω = 1 for one dimensional flow). In the exist-
ing QDS-2N [5], the values of ρ, u, and σ employed in QDS particle
initialization are taken from reconstructions based on linear vari-
ations between neighbor cells. Despite fluxes being true direction
in nature, the reconstructions performed in previous implementa-
tions are directionally decoupled—i.e. a flux is computed through
the product of (separate) fluxes previously computed (for 2D flow)
in the x and y directions. For the 2D case, the particle mass and ve-
locities in Eq. (7) become:

mJK =
ρ∆x∆ywJwK

π
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where there are K = 1, . . . ,M particles in the y-direction and the
definition of other variables are the same as those in 1D case. The
internal energy remains identical to the 1-D case, allowing for a
corresponding increase in Ω to account for the extra simulated
dimension. The fluxes from sources cell to any arbitrary destina-
tion cell can be calculated by the particle position distributions.
The fluxes of mass, momentum and energy, which are based on
the proportion of the overlapped area to the area of the original
cell, are given by:
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