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a b s t r a c t

We introduce a computational method that permits us to increase the interaction time for quantum
mechanical and quantum field theoretical simulations of multi-particle states on a finite space–time grid.
In contrast to the usual approach where the unwanted portion of the wave function close to the grid
boundaries is absorbed by a potential with a negative imaginary part, thismethod is unitary and therefore
conserves the norm of the state. This technique is based on assigning particles close to the boundary a
larger effective mass (or slower speed of light) such that the particles slow down and cannot re-enter
the interaction zone. The method can therefore be applied to multi-particle states for which imaginary
potential methods fail.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Space–time resolved simulations of the evolution of quantum
wave packets in various external fields have greatly advanced
our knowledge of dynamical systems in atomic, molecular, optical
and chemical physics. In these numerical solutions to the time-
dependent Schrödinger or Dirac equation, the spatial coordinate
axes are usually discretized into a finite number of grid points
and the time-evolution is obtained iteratively. The maximum
interaction time that can be studied is then limited by the finite
length of the numerical box. Once portions of the wave packet
that normally would escape to infinity reach the edges of this
box, they are either reflected or wrapped around to the other
edge, depending on the boundary conditions. These portions can
then re-enter the interaction region, which leads to unwanted and
unphysical interferences. Extending the numerical size of this box
is often not practical due to restrictions on computer memory as
well as CPU time.

In order to compensate for these unwanted portions of the
wave packet and therefore to extend the interaction time, several
proposals have been made [1–7]. They include the introduction
of a potential with a negative imaginary part, which is equivalent
to applying a masking function, as well as complex coordinate
rotation or exterior complex scaling [8–12], and complex spatial
variables have also been examined for single particle systems. For
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example, thesemethods have been applied to study the generation
of higher-harmonics in ionization [13] and double-ionization in
strong-field physics [14].

In the last few years the space–time resolved approach has
also been generalized to simulate the dynamics of quantum field
theoretical systems, but the interaction time is again restricted by
the samebottleneck as particle densities reach the boundaries [15].
In this case the above techniques are not applicable. In this note
we discuss a new unitarity-preserving computational method to
increase the interaction time. Instead of removing the unwanted
portions of the spatial density that have reached the boundary,
they are assigned a largermass (or a smaller speed of light), leading
to an effective slow-down (‘‘parking’’) of density in this particular
region. In this way, the particles are prohibited from re-entering
the interaction zone. We discuss below how to optimize these
parking zones for specific quantummechanical and quantum field
theoretical model systems.

2. Difficulties associated with the non-unitary evolution of
multi-particle systems

Asmentioned in the Introduction, the inclusion of an extra neg-
ative imaginary potential close to the boundary regions can extend
the interaction time of single-particlewave packet simulations sig-
nificantly. For example, a constant negative imaginary part would
lead to a spatially exponential decay of thewave function. The opti-
mum choice for the spatial profile of such a potential is determined
by the three competing requirements to (1) minimize the number
of spatial grid points that are allocated to represent the absorbing
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spatial region, (2) to maximize the degree of absorption and (3)
to minimize the reflection due to this potential itself. The second
point can be accomplished by increasing the amplitude of the po-
tential and its spatial extension. The reflection can be minimized
if the amplitude of the potential is not too large and if it is slowly
ramped up over a sufficiently large spatial domain.

For a single-particle wave function, Ψ (x, t) = ψ1(x, t) +

ψ2(x, t), where ψ1(x, t) is localized in the interaction region and
ψ2(x, t) is localized near the boundary, this method works very
well, as only the unwanted portion ψ2(x, t) (which has reached
the absorbing zone) is simply removed from the state, which effec-
tively reduces the norm of the remaining state Ψ (x, t) = ψ1(x, t).
Ideally, we would like to generalize this technique to simulations
that describe more than just one particle and ‘‘remove’’ only that
particular particle from the simulation that has approached the
grid edge. To illustrate this for a simple example, let us assume that
we have the simplest case of an (uncorrelated) two-particle wave
function Ψ (x, y, t) = ψ1(x, t)ψ2(y, t), where the second parti-
cle described by the stateψ2(y, t) has reached the absorbing zone.
Unfortunately, an imaginary potential V (x, y) is not able to differ-
entiate between ψ1(x, t) and ψ2(y, t) and would therefore reduce
the norm of the entire state Ψ (x, y, t). An ideal and truly discrimi-
nating absorption mechanism would be able to ‘‘remove’’ only the
unwanted portion ofψ2(y, t) from Ψ (x, y, t), therefore effectively
reducing a two-particle state into a single-particle state character-
ized solely by ψ1(x, t). Unfortunately, this reduction of the total
number of particles cannot be accomplishedwithin a quantumme-
chanical calculation.

In the framework of quantum field theory, however, a reduction
from a two- to a single-particle system could be modeled, in
principle, but it is not practical due to the occurrence of unwanted
interferences as we will discuss below. In fact, it is not possible
within a wave function based formalism to reduce an initial
two-particle state |2⟩ to a one-particle state |1⟩ without the
occurrence of unavoidable interferences as the state |1⟩ is built up
continuously in time.

To have the simplest possible model system [16] to illustrate
this effect, let us assume that the state is given by the superpo-
sition |Ψ (t)⟩ = C1(t)|1⟩ + C2(t)|2⟩ and the continuous removal
of the unwanted particle at the boundary is modeled by the (non-
Hermitian) Hamiltonian, H = E1|1⟩⟨1| + E2|2⟩⟨2| + |1⟩⟨2|, where
for simplicity all single and two-particle energies are lumped to-
gether as E1 and E2, respectively. In this Hamiltonian the popula-
tion can flow only to the single-particle state |1⟩, but not to |2⟩, as it
does not contain a coupling |2⟩⟨1|. The resulting equations of mo-
tion of the amplitudes, i dC1/dt = E1C1 + C2 and i dC2/dt = E2C2,
can be easily solved for |Ψ (t = 0)⟩ = |2⟩, leading to C1(t) =

[exp(−iE2t) − exp(−iE1t)]/(E2 − E1) and C2(t) = exp[−iE2 t].
The time evolution of the population of the single-particle state
is simply given by |C1(t)|2 = [2 sin[t(E2 − E1)/2]/(E2 − E1)]2.
After the expected initial growth of |C1(t)|2, at a characteristic time
t = π/(E2−E1) this probability begins to decay again, even though
the Hamiltonianwas purposely chosen to not contain any coupling
term (such as |2⟩⟨1|) that could add a particle to the dynamics and
therefore effectively decrease |C1(t)|2. The observed decrease of
|C1(t)|2 can be understood in terms of a changing phase of the ex-
citation associated with the time evolving state C2(t)|2⟩. At later
times the state |2⟩ takes a different phase than at earlier times;
therefore, a destructive interference can lead to the decay in pop-
ulation in state |1⟩. This decay is obviously a purely quantum me-
chanical mechanism that does not have any classical mechanical
counterpart. In any case, this interference is unavoidable if one of
the two particles is absorbed and therefore a single-particle state
is created.

As a side note we might mention that an interference-free re-
duction from |2⟩ to |1⟩ can be described within a density matrix
formalism and a corresponding master equation [17], but then the

final state can no longer be described by a (coherent) wave func-
tion. Also, a density matrix would require a much larger Hilbert
space than a state and therefore cannot really simplify a space–
time grid simulation.

3. The parking scheme for the non-relativistic quantum me-
chanical evolution

3.1. The position-dependent mass M(x)

Beforewe discuss the quantummechanical and field theoretical
implementation, let us briefly consider the parking method from
classical non-relativistic and relativistic perspectives. The main
idea is to slow down the particle close to the boundary (in the
parking zone) by assigning it a position-dependent mass, M(x).
Once the particle enters the zone, it slows down and increases the
time it takes to hit the physical boundary without changing the
norm of the state or the number of particles.

In order to describe the position dependent mass in terms of
non-relativistic classical mechanics, we use the Hamiltonian for-
malism, where the Hamilton function is given by h = p2/(2M(x)).
We note that this formalism is equivalent to a Newtonian for-
malism, where the analogue of Newton’s 2nd law would read as
M(x) d2x/dt2 = −(dx/dt)2 (dM/dx)/2. Of course, as h is time-
independent, this leads to the conservation of the total energy,
E = p2/[2M(x)].

For a mass function M(x) that increases monotonically with x
inside the parking zone, the particle’s momentum p increases as
its velocity decreases for the non-relativistic quantummechanical
discussion below. This follows directly from conservation of
the total energy, which also shows that p/M(x) decreases with
increasing x. During the entire evolution, the velocity dx/dt =

∂h/∂p = p/M(x) decreases but remains positive, while dp/dt =

−∂h/∂x = (1/2)p2/M(x)2 dM/dx is always positive. We also note
that the particle can only come to a complete halt if the mass
function M(x) has a singularity and becomes infinite. Take the
simple example of a linearly ramped-up mass, M(x) = m[1 +

α(x− xM)θ(x− xM)], where θ(· · ·) denotes the Heaviside unit step
function, xM the beginning of the parking zone and α the potential
strength. If a particle (with mass m) enters the zone at t = 0 with
velocity v, we obtain x(t) = xM +[−1+(1+3vαt/2)2/3]/α, which
shows that the particle slows but does not stop in a finite distance,
as x(t) ∼ t2/3 for long times.

In contrast to the non-relativistic limit, a relativistic particle,
modeled by h = [M(x)2c4 + c2p2]1/2 can come to rest at a finite
distance x even if the mass function is not singular. We denote
with c the speed of light, and from now on we use atomic units
where c = 137.036. This finiteness follows from energy conserva-
tion, which prohibits an incoming particle with true mass m from
visiting spatial regions that are associated with an energy larger
than E = [m2c4 + c2p20]

1/2, where p0 is its initial momentum.
In other words, a relativistic orbit cannot exceed xlim, defined by
M(xlim) = [m2

+ c−2p20]
1/2. Furthermore, its canonical momentum

p decreases as a function of time, as dp/dt = −c4M(x)dM/dx/h is
always negative. As a result, in contrast to the non-relativistic case,
the particle can turn around and return to the interaction zone,
which is undesirable. This is also obvious from the non-relativistic
limit (c → ∞) of theHamilton function h, where the leading terms
play the role of an extra potential, h = M(x)c2 + p2/[2M(x)] +

O[(p/c)4]. As a concrete example, if we again ramp up the mass
linearly, M(x) = m[1 + α(x − xM) θ(x − xM)], we would obtain
xlim = xM + [(1 + p20m

−2c−2)1/2 − 1]/α.

3.2. The optimization of themass functionM(x) in the non-relativistic
case

An implementation of the parking mechanism in a non-
relativistic quantum simulation is rather straightforward and can
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