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a b s t r a c t

An accelerated discrete velocity method is presented to calculate the steady axial-symmetric flows of
gaseous mixtures defined by the McCormack kinetic model. The scheme is formulated in cylindrical
coordinates. Diffusion equations for the macroscopic velocity and the heat-flow are derived on the basis
of the projectedMcCormack equations. The solutions of the kinetic equations are carried out iteratively by
using the discrete velocitymethod. The diffusion equations are also solved in each stage of the iteration in
order to accelerate the scheme. Pressure driven flows of He/Xe and Ne/Ar mixtures through a cylindrical
tube are simulated in order to study the computational performance of the approach. It is shown that
the required number of iterations and the computational times are significantly reduced at intermediate
and large values of the rarefaction parameter by using the accelerated method. In the hydrodynamic
limit, the flow rates of the components converge to the corresponding slip flow results. Flows driven by
mole fraction gradient are also successfully simulated. Typical velocity and heat-flow profiles for pressure
driven flow of He/Xe mixture are shown and commented on.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The numerical solution of the Boltzmann or other kinetic equa-
tions has receivedmuch attention in the scientific community over
the last years due to the increasing interest in new technologies at
the micro- and nano-scale, i.e. gaseous micro- and nano-fluidics
[1,2], and more traditional applications in rarefied gas dynamics,
such as vacuum science [3].

One of the most accurate treatments for solving kinetic equa-
tions is the discrete velocitymethod (DVM),where themicroscopic
velocity and spatial spaces are discretized, the differential opera-
tors and the integrals are approximated by finite differences and
quadratures and the resulting discrete equations are solved com-
putationally. The method has extensively been used for the solu-
tion of linearized kinetic equations describing the flows of rarefied
single gases through various channels [4,5]. For gaseous mixtures,
the McCormack kinetic model has also been solved by the DVM
for several flow configurations [6,7]. However, it is well-known
that the original DVMhas some drawbacks near the hydrodynamic
limit: the iteration slowly converges and the results are biased by
the accumulated rounding errors. To overcome this difficulty, the
synthetic type acceleration can be used successfully [8,9]. The ac-
celerated DVM has been developed for rectangular and triangular
geometries [10–12], which can be described in Cartesian coordi-
nates. Recently, it has been applied for axial-symmetric flows of
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single gases [13]. It is straightforward to extend themethod for the
more complicated case of axial-symmetric flows of gaseous mix-
tures. Since the development for mixtures is more complex and
contains several non-trivial derivations, it is useful to present the
case of gaseous mixtures in a separate communication.

In this paper, an accelerated discrete velocity method is devel-
oped for calculating the steady axial-symmetric flows of gaseous
mixtures on the basis of theMcCormack kineticmodel. Themethod
is formulated in cylindrical coordinates. Two diffusion equations
for the macroscopic velocity and the heat-flow are derived on the
basis of themoments of the reducedMcCormack equations. The so-
lution of the kinetic problem is carried out in an iterative manner
by using the discrete velocity method. The two diffusion equations
are used to accelerate the iteration performance. They are solved
in a coupled iteration with the original kinetic equations by the
finite-differencemethod. Pressure driven flows of He/Xe andNe/Ar
mixtures are simulated in order to analyze the standard and accel-
erated schemes. The number of iterations and the computational
times are studied. Mole fraction driven flows are also calculated
for validation purposes. Typical velocity and heat-flow profiles of
pressure driven flow of He/Xe mixture at various rarefaction pa-
rameters are shown.

2. Definition of the problem

The steady flow of a binary gas mixture through a cylindrical
tube with radius R and length L is considered. The tube is assumed
to be long, R ≪ L. The axis of the tube lies along the z ′ coordinate
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direction, while its cross section is located in the (x′, y′) coordinate
sheet. Dimensionless coordinates are introduced according to x =

x′/R, y = y′/R and z = z ′/R. On the cross section, (r, φ) polar
coordinates are also introduced such that x = r cos(φ) and y =

r sin(φ).
The densities and the molecular masses of species α = 1, 2 are

denoted by nα(z) andmα . The mole fraction of the first component
is defined by C = n1/n, where n = n1 + n2 is the total density. The
flow is characterized by the rarefaction parameter

δ =
PR
µv0

, (1)

where P is the pressure,µ is the viscosity and v0 =
√
2kBT/m is the

characteristic molecular speed. Here, kB is the Boltzmann constant,
T is the temperature andm = Cm1+(1−C)m2 is the averagemass.

The flow is described by the velocity distribution function of
the molecules fα(v, r, φ, z), where v denotes the molecular speed.
Since the tube is long, the speed of the gas is small compared to the
characteristicmolecular speed and the distribution function can be
linearized as fα(v, r, φ, z) = f (0)α (v, z)[1 + hα(v, r, φ)], where

f (0)α (v, z) = nα(z)


mα

2πkBT

3/2

exp


−
mαv

2

2kBT


(2)

is the local equilibrium and hα(v, r, φ) denotes the perturbation
function. For later purposes, dimensionless molecular velocities
and their representations in Descartes and cylindrical coordinates
are introduced according to cα = (v/v0)

√
mα/m and cαx = cαT

cos(ϕ), cαy = cαT sin(ϕ), cαz . Here, cαT =


c2αx + c2αy. The absolute

value of cα is denoted as cα . The Descartes and cylindrical repre-
sentations are used interchangeably in the following.

The present method is designed for isothermal flows driven by
arbitrary gradients of the component densities along the axis of
the tube. In this way, two types of flow, namely flows driven by
pressure (P) or mole fraction (C) gradients are considered. The di-
mensionless gradients of the relevant local macroscopic quanti-
ties for these two types of flow are defined by XP = (1/n)∂n/∂z,
XC = (1/C)∂C/∂z, respectively. The method can easily be mod-
ified to simulate temperature gradient driven flows as well. The
modified method for temperature driven flows has been checked
by the author, and it works well. However, these results are not
considered in this paper. The author may report the results else-
where.

The flow of the mixture is described by the McCormack kinetic
equation [14] along the radial coordinate (φ = 0) such that

cαx
∂hα
∂r

−
cαy
r
∂hα
∂ϕ

= −γαωαhα + ωα


mα

m


2Aαcαz

+ 4Bαcαxcαz +
4
5
Cαcαz


c2α −

5
2


− [XP + ηαXC ] cαz, (3)

where

Aα = γαuα − ν
(1)
αβ (uα − uβ)−

1
2
ν
(2)
αβ


qα −

mα

mβ

qβ


, (4)

Bα = κα


m
mα

pα + ν
(4)
αβ


m
mα

pβ , (5)

Cα = λαqα + ν
(6)
αβ


mβ

mα

qβ −
5
4
ν
(2)
αβ (uα − uβ) (6)

and

ωα =


mα

m


C
γ1

+
1 − C
γ2


δ. (7)

In these expressions, α, β = 1, 2 and β ≠ α. The quantities γα,
ν
(k)
αβ , λα and κα are collision frequencies, which can be deduced

for a particular interaction model and can be found in Ref. [15] for
the hard-sphere interaction. It is noted that λα and κα are the lin-
ear combinations of ν(k)αβ . The collision frequencies, γα and ν(k)αβ , for
hard-spheremolecules can also be found in Refs. [6,7,10,12]. In ad-
dition, η1 = 1 and η2 = −C/(1 − C) for the mole fraction driven
flow.

The relevant macroscopic quantities, the axial velocity, the rz
component of the shear stress and the axial heat-flow, are the
moments of the perturbation function

uα = π−3/2


m
mα


dcαhαcαz exp(−c2α), (8)

pα = π−3/2


dcαhαcαxcαz exp(−c2α), (9)

qα = π−3/2


m
mα


dcαhαcαz


c2α −

5
2


exp(−c2α). (10)

The kinetic equation, Eq. (3), is supplemented with the
boundary condition at thewall of the tube. In the presentwork, the
diffuse reflection boundary condition is assumed. The condition
for perturbation function can be written by hα(cα, 1) = 0 for the
incoming velocity directions cαx < 0.

One of the interests of the paper is in the dimensionless
component flow rates defined by

Gα = 4
 1

0
druα(r)r. (11)

2.1. Projected formalism

The above formulation can be simplified by introducing the new
variables

Φ(1)
α = π−1/2


m
mα


+∞

−∞

dcαzhαcαz exp(−c2αz), (12)

Φ(2)
α = π−1/2


m
mα


+∞

−∞

dcαzhαcαz


c2αz −

3
2


exp(−c2αz). (13)

In terms of these two quantities, the kinetic equation can be
written by

cαx
∂Φ(1)

α

∂r
−

cαy
r
∂Φ(1)

α

∂ϕ

= −γαωαΦ
(1)
α + ωα


Aα + 2Bαcαx +

2
5
Cα


c2αT − 1


−

1
2


m
mα

[XP + ηαXC ], (14)

cαx
∂Φ(2)

α

∂r
−

cαy
r
∂Φ(2)

α

∂ϕ
= −γαωαΦ

(2)
α + ωα

3
5
Cα. (15)

The macroscopic quantities are given by

uα = π−1


+∞

−∞

dcαx


+∞

−∞

dcαyΦ(1)
α exp(−c2αT ), (16)

pα = π−1


mα

m


+∞

−∞

dcαx


+∞

−∞

dcαyΦ(1)
α cαx exp(−c2αT ), (17)

qα = π−1


+∞

−∞

dcαx

×


+∞

−∞

dcαy[Φ(1)
α (c

2
αT − 1)+ Φ(2)

α ] exp(−c2αT ). (18)
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