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a b s t r a c t

Advances in IT infrastructure have enabled the generation and storage of very large data sets describing
complex systems continuously in time. These can derive from both simulations and measurements.
Analysis of such data requires the availability of scalable algorithms. In this contribution, we propose
a scalable algorithm that partitions instantaneous observations (snapshots) of a complex system into
kinetically distinct sets (termed basins). To do so, we use a combination of ordering snapshots employing
the method’s only essential parameter, i.e., a definition of pairwise distance, and annotating the resultant
sequence, the so-called progress index, in different ways. Specifically, we propose a combination of cut-
based and structural annotations with the former responsible for the kinetic grouping and the latter for
diagnostics and interpretation. The method is applied to an illustrative test case, and the scaling of an
approximate version is demonstrated to be O(N logN) with N being the number of snapshots. Two real-
world data sets from river hydrology measurements and protein folding simulations are then used to
highlight the utility of the method in finding basins for complex systems. Both limitations and benefits of
the approach are discussed along with routes for future research.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

With present day computing resources, large-scale temporal
simulations of complex systems can be performed routinely, and
time-resolved, experimental data in many dimensions are col-
lected and stored. In both cases, the resultant, very large amounts
of data require dedicated, scalable protocols to handle access and
analysis [1–3]. Examples can be found in fields such as protein sci-
ence [4,5], astronomy [6], cell biology [7], or climatology [8] to
name just a few.

For a complex system evolving in time, data are present in the
form of sequences of instantaneous snapshots (microstates in the
language of statisticalmechanics) of this complex system, and such
a sequence will be referred to as a trajectory throughout. Depend-
ing on whether data are synthetic or real, the implied projection
of the system to obtain a snapshot may differ, and this may limit
spatial resolution. Temporal resolution is limited directly by the in-
struments or numerical schemes if storage space is not a concern.
Even though continuous evolution need not be observed explicitly
as a function of time, we will restrict our terminology to this case.
Routine analyses of trajectory datamay involve computing average
properties and their estimated distribution functions inO(N) time,
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where N is the number of snapshots. Distribution functions offer
hints toward the diversity of states visited by the complex system
and their relative weights. Time-resolved analyses provide insight
regarding state connectivity and transition rates. Projection onto
low-dimensional properties is necessary to render such analyses
statistically meaningful and visualizable by conventional means.

If we assume that snapshots follow a well-defined distribution
(such as the Boltzmann distribution for particles in the classical
limit), these analyses look for spatial domains that are highly pop-
ulated under the given conditions, i.e., those forwhich a finite sam-
ple yields higher-than-average densities of microstates, preferably
through recurrence [9]. Here, recurrence refers to the trajectory’s
property of entering and exiting subdomains within high den-
sity regions several times. The motivation behind this is twofold:
(1) characterization of the complex system and communication of
results in terms fit for human consumption [10]; (2) derivation of
simplified models that provide a meaningful representation of the
complex system [11,12]. Such models can preserve coarse-grained
dynamical and static properties of the system and enable predic-
tions to bemade over vastly extended temporal or spatial domains.

When analyzing trajectories in projected spaces, high den-
sity regions are prone to overlap, and plots rarely resolve all of
them [13]. This overlap phenomenon can lead to incorrect con-
clusions regarding the diversity and connectivity of coarse states.
Consequently, affordable protocols that require little knowledge of
the system a priori and that decrease the likelihood of such overlap
are of interest. Techniques such as principal component analysis,
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spectral clustering [14] and the related diffusion maps [15], locally
linear embeddings [16], cut-based free energy profiles [17], kinetic
groupings based on networks [18–21], which are specific cases of
community detection algorithms in graphs [22], etc. are all in use,
but many of them scale superlinearly with N .

Data clustering [23] offers a simple route to the identification
of high density domains. Clusters are defined as groups of mutu-
ally similar snapshots. Similarity is assessed by a criterion of dis-
tance generally requiring an ad hoc selection of both a subset of
features [24] and a functional form. However, a grouping meant to
describe an evolving system should also encode dynamic proxim-
ity [25], i.e., given a time resolution, which snapshots constitute
a kinetically distinct state? If the system is of atomic scale and
at equilibrium, this question aims to identify free energy basins
and barriers in a generally high-dimensional phase space [26,27].
Positional coordinates of atoms are often used exclusively given
that momenta can likely be ignored out on account of their much
shorter autocorrelation times. We note that the language and con-
cepts of statistical physics have proven useful in the analysis of
nonphysical systems as well [28], i.e., our adaptation of this lan-
guage does not imply a restricted domain of application.

In this contribution, we present an algorithm that operates di-
rectly on a trajectory.With just the definition of a pairwise distance
between snapshots,we are able to generate a one-dimensional plot
that allows the identification of states in a joint geometric and ki-
netic sense, whichwewill refer to as basins.With standardmetrics
derived from microstate representations (such as interatomic dis-
tances in a flexible molecule), the method relies on the continuity
of geometric representations in time. This implies that it may fail
for certain classes of discrete systems. The main benefits of our al-
gorithm are that it does not rely on any parameters per se, that it is
very likely to resolve all basins, and that with the help of reason-
able approximations to the exact procedure, the total running time
approaches O(N logN). The combination of these points is worth
emphasizing, since we believe that they constitute a desirable and
unique fingerprint of our approach.

The rest of this manuscript is structured as follows. First, we
present the key ideas behind the procedure (Section 2.1) and il-
lustrate its utility with a suitable model system (2.2). Next, we de-
scribe a computationally efficient and robust approximation to the
exact procedure. The scaling of computational cost with data set
size and dimensionality is tested explicitly (2.3). This is followed
by applying the method to two complex real-world data sets, the
first fromhydrology (3.1) and the second fromprotein folding (3.2).
We conclude by discussing the advantages and possible problems
in comparison with related approaches (4).

2. Methods and proof of concept

2.1. The exact algorithm

Let T = {t1, . . . , tN} be a set (trajectory) of N unique snapshots,
which usually are representations of the system in RD, which is
the chosen subspace of the original system representation with
D ≤ Dsystem. We use any pairwise distance d : RD

× RD
→ R≥0

to measure the similarity between two snapshots. This need not
be a purely coordinate-dependent function. Below it will prove
beneficial for d to be a metric yielding a continuous number space
with all O(N2) values of d being unique.

We can now define the following iterative procedure. Choose a
starting snapshot s1 ∈ T and create the set S1 = {s1}. Initialize the
cut function, c : {1, . . . ,N} → N, to 2. Then, for i = 1, . . . ,N − 1
do the following:

1. Define si+1 as the snapshot in T\Si realizing the minimum of
d(·, Si) = minj=1,...,i d(·, sj).

Fig. 1. Schematic highlighting the fundamental components of the algorithm. A.
A set of points in two dimensions is shown as circles. See 2.1 for details. B. The
points in A are shown as a subset of a larger data set. Arrows and letters indicate
progression in time. The color scheme follows the order in which points are added
when starting with point p, i.e., colors trace the progress index itself. The schematic
on the bottom shows values for the inverse logarithm of c at each value of the
progress index. An example point and the cut to obtain the respective partitions Si
and Ai are highlighted. Point c illustrates an outlier, which are prone to be added last
to S. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2. Let Si+1 = Si ∪ {si+1}.
3. Define c(i + 1) =

N−1
j=1 ζSi+1(tj, tj+1).

Here, the function ζ is defined as

ζX (t, u) =


0 if neither or both t and u are part of set X
1 otherwise. (1)

The exact progress index of T starting with s1 is defined as the
sequence S(T , s1) = (s1, . . . , sN). Each entry i is associated
with a value for the cut function, c(i). In words, given a starting
snapshot, the algorithm finds a unique ordering of the snapshots,
and annotates it with the number of transitions between the two
partitions defined by all the snapshots that are currently part of the
set (Si) and those that are not yet part of the set (Ai = T\Si). The cut
function c is related to the mean first passage time in the implied
two-state Markov model via

τMFP(Ai → Si) + τMFP(Si → Ai) = 2N/c(i). (2)

We use τAS as shorthand notation for τMFP(Ai → Si) throughout.
In Fig. 1(A), we show an illustration of a trajectory in 2D space
with the current set of snapshots 1–3. The order of adding further
snapshots would then be d,n, r, e, and q based on the mutual
distance relations. There are no free parameters beyond having to
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