Computer Physics Communications I (RIEN) INE-EEE

journal homepage: www.elsevier.com/locate/cpc

Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

Accelerating dissipative particle dynamics with multiple GPUs

Sibo Wang P, Junbo Xu®*, Hao Wen?

2 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

b University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO ABSTRACT

Arfid}’ history: Dissipative particle dynamics (DPD) simulation is implemented on multiple GPUs by using NVIDIA’s Com-

Received 24 January 2013 pute Unified Device Architecture (CUDA) in this paper. Data communication between each GPU is exe-

sicelvez%llr;rewsed form cuted based on the POSIX thread. Compared with the single-GPU implementation, this implementation
une

Accepted 12 June 2013
Available online xxxx

can provide faster computation speed and more storage space to perform simulations on a significant
larger system. In benchmark, the performance of GPUs is compared with that of Material Studio running

on a single CPU core. We can achieve more than 90x speedup by using three C2050 GPUs to perform

Keywords:

Graphic processing unit
CUDA

Dissipative particle dynamics
Lubricant

Dispersant

simulations on an 80 * 80 *x 80 system. This implementation is applied to the study on the dispersancy
of lubricant succinimide dispersants. A series of simulations are performed on lubricant-soot-dispersant
systems to study the impact factors including concentration and interaction with lubricant on the disper-
sancy, and the simulation results are agreed with the study in our present work.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dissipative particle dynamics (DPD) is a mesoscopic simulation
technique introduced by Hoogerbrugge [1] and Koelman [2]. It was
devised to simulate dynamical and rheological properties of com-
plex fluids; by introducing bead-and-spring type particles, poly-
mers can be simulated as well [3,4]. With 20 years of development,
this method has been successfully applied in different researches,
including block-copolymer micro-phase separation [5], surfactant
behavior [6,7], phase separation in binary immiscible fluids [8], ag-
gregate structure in heavy crude oil [9] and so forth. Since DPD is
a coarse-grained technique that only captures the gross features
of mesoscopic portions, it can process a much larger spatial and
temporal scale system than molecular dynamics (MD) can. Even
though, computational cost is still a limiting factor. Most imple-
mentations of the classic DPD algorithm are running on CPU by se-
rial programming. However, in recent years, the compute force of
a single CPU core can hardly continue increasing. The developers
start to try parallelizing the DPD simulation program with a vari-
ety of parallel computing platforms and technologies to improve
the performance. On one hand, some commercial softwares like
Material Studio, Culgi Library, LAMMPS, have already been avail-
able to run DPD simulations on multiple CPU cores in parallel
using message-passing techniques. On the other hand, graphics
processing units (GPUs) have become easily programmable and

* Corresponding author. Tel.: +86 1082612330.
E-mail address: jpbxu@home.ipe.ac.cn (J. Xu).

0010-4655/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2013.06.011

highly parallel processors; a GPUs-based implementation can be
an alternative.

In recent years, GPUs have evolved to very powerful and highly
parallel compute devices, and their parallel structure makes them
even more effective than CPUs for processing large blocks of data
in parallel. Besides, the NVDIA compute unified device archi-
tecture (CUDA) [10] has developed into a powerful and flexible
programming toolkit for general-purpose computing on graphics
processing units (GPGPU). The researchers started to use GPU'’s
significantly computational power in scientific computing ap-
plications. A few previous works have investigated GPU imple-
mentations of specific algorithms used for MD. Stone et al. [11]
have examined a GPU implementation for electrostatics. Ander-
son et al. [12] developed a general purpose MD code based on
a neighbor-list structure that runs entirely on a single GPU, and
the tests show the performance almost equivalent to that of fast
30 processor core distributed memory cluster. Later, van Meel
et al. [13] present a double buffered partial updates of the cell-
list, and conventional MD simulations using their GPU-based code
can run 25-80 times faster than on a single CPU core at compa-
rable prices. Friedrichs et al. [14] implemented all-atom protein
molecular dynamics running entirely on GPU. In the field of DPD
simulations, the study of GPU implementation has been reported
rarely. HOOMD is a MD code package that can perform DPD sim-
ulations on GPU. The performance benchmark of HOOMD shows
that DPD simulations running on a single NVIDIA GTX480 can even
be faster than the CPU code parallelized over 64 cores [15]. In our
previous work, we developed a GPU implementation of DPD sim-
ulations as well [16]. All parts of the simulation are running on

http://dx.doi.org/10.1016/j.cpc.2013.06.011

Please cite this article in press as: S. Wang, etal., Accelerating dissipative particle dynamics with multiple GPUs, Computer Physics Communications (2013),



http://dx.doi.org/10.1016/j.cpc.2013.06.011
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:jbxu@home.ipe.ac.cn
http://dx.doi.org/10.1016/j.cpc.2013.06.011

2 S. Wang et al. / Computer Physics Communications 1 (11E1) IR1-111

GPU, including cell-list updating, force calculation and integrating
forward. The benchmark results run on a single NVIDIA GTX285
under different scales of simulation system, all shows over 20x
speedup against the serial version DPD provided by the Material
Studio. Several implementations of MD [17,18] and lattice Boltz-
mann method (LBM) [19,20] have supported running simulations
on multiple GPU devices. General computing programs running on
multiple GPUs can achieve better performance. More importantly,
simulations on quite large systems require such a great amount of
memory that a single GPU cannot provide. However, to our knowl-
edge, the study of DPD simulation running on multiple GPUs has
not been reported yet.

In this paper, we present a POSIX-based implementation of DPD
simulation which can be running on multiple GPUs in a server or
workstation. Compared with the MPI-based application running on
a multi-node cluster, our implementation has a limitation on the
number of GPUs, but it is still a meaningful work. Large clusters cost
much more money, and the maintenance work is heavy. Besides, it
can be seen as a basis to develop an MPI-based implementation.
The paper is organized as follows. We first briefly introduce
technologies about CUDA programming on multiple GPUs and our
domain decomposition method. Next, we give the details of the
executions on each GPU in one time step of a simulation, including
the computation and the communication. Then the performance
of our implementation is tested. We run series of benchmarks
to discuss how the performance can be impacted by simulation
system size, GPU hardware, and the number of GPU used. Last,
simulations on lubricant-soot-dispersant systems are performed
by our implementation running on six Tesla C2050 GPUs.

2. Implementation

2.1. CUDA on multiple GPUs

In recent years, a computer containing multiple graphics de-
vices has become more and more common. Users can add graphics
card in PCI Express slot conveniently. Furthermore, some products
of NVIDIA, such as GeForce GTX295, GTX 590 and GTX690, contain
two GPUs on a single card already. Running CUDA computing pro-
grams on multiple GPUs can achieve much more throughput.

To use multiple GPUs, the CUDA program usually creates one
CPU thread for each requested GPU in order to hold the corre-
sponding CUDA context. POSIX threads and OpenMP are two APIs
that are used for shared memory multiprocessing programming,
and they can help to manage the CPU threads in the multi-GPU
program. With CUDA and the message passing interface (MPI), the
computing program can be implemented on larger systems like
clusters that contain hundreds of GPUs. Besides data transfer be-
tween GPUs, CPU threads also have the ability to make global syn-
chronizations with a barrier function provided by POSIX or other
parallel programming APIs.

Since CUDA4.0 was introduced in 2011, multi-GPU program-
ming has become easier and faster. Sharing GPUs across multiple
threads is supported, and single thread can access to all GPUs now.
More importantly, the new NVIDIA GPUDirect technology [21]
makes a big improvement on GPU communication in a node. Data
transfer between GPUs can be realized by peer-to-peer memory
copy or access directly instead of using system memory as an in-
termediary.

In our implementation, POSIX was used for running a parallel
code. Although the new version of CUDA has made a great effort
on multi-GPU programming, some of the new features are just
available for the devices of compute capability 2.0 and above. For
the purpose that our program is supposed to be running on most
kind of GPUs, we did not make optimizations intentionally for the
new version of CUDA. As a result, our simulation program still has
significant room for performance improvement.

2.2. Domain decomposition

For the implementation of multi-GPU DPD program, the so-
lution domain should be decomposed into subdomains at first,
and simulation in each subdomain is running on different GPU.
The optimized domain decomposition must lead to a balanced
distribution of computational load and also minimum communica-
tion between GPUs. Since we decided to use the cell-list neighbor-
searching method before the force calculation, a cell is set as the
minimum unit in domain decomposition. As Fig. 1 shows, we parti-
tioned the 3D simulation box in the z-direction and got n piece; nis
the number of GPUs in the system. Each piece has the same length
in the x-direction and y-direction with the whole simulation box,
while the length in the z-direction may differ slightly. The length in
the z-direction of simulation box may not be divisible by n, which
would have an impact on distributed load balancing.

In initialization work before simulation, the data about parti-
cles’ properties, such as positions and velocities, are copied into
different corresponding GPU memory. After domain decomposi-
tion, the simulations in every subdomain are running on each GPU.
There is data communication between GPUs every time step, which
makes the simulation in the whole domain look like running on a
single GPU. The data communication mainly has two situations:
when calculating the pair-force for one particle, there is a possibil-
ity that the data for the other particle are stored in another GPU;
after position and velocity updating, some particles will not reside
in the same subdomain any more.

2.3. Simulation details on GPUs

The communication between GPUs and CPUs is executed by
data transfer in PCI Express. For some applications based on GPU,
the bandwidth limitation of PCI Express is the major bottleneck for
performance. In these implementations, only some computation-
intensive parts are performed in parallel on GPU, while other parts
just can be executed by CPU. GPU need to communicate with the
host frequently to get necessary data, which results in plenty of
waiting time for streaming processors (SPs). The waste of com-
puting resource is the reason why those GPU-based applications
cannot achieve a distinct performance speedup. Fortunately, all
computational works in DPD simulation are highly parallel. Once
the initialization work is done, the whole simulation can be exe-
cuted by GPU. What we should consider is how to minimize the
data transfer between GPUs. The implementation details about the
computation and the communication are given as follows.

2.3.1. Generate cell-list

The pair interaction in DPD is short-ranged. Finding particles
in the range of cutoff for force calculating can be extremely time-
consuming on CPU when the length scale of simulation becomes
large. Cell-list turned out to be an efficient method to reduce
the computational complexity, and the high parallelism makes its
algorithm suitable for implementation on GPU. In this method,
the simulation box is typically decomposed into smaller domains,
called cells. The information about correspondence between par-
ticles and cells can be achieved easily after decomposition, and
plenty of data structures are available for storage [22]. In our
single-GPU implementation, we choose to assign a fixed sized ar-
ray of placeholders to every cell and physically copy particles’ in-
dexes into this array. The indexes are used to find the particles’
properties data in the global memory, such as positions, velocities,
and so on. It is an efficient scheme, although a portion of storage
is wasted since each array must have enough space to store parti-
cles’ indexes at the highest possible density. We set the side length

http://dx.doi.org/10.1016/j.cpc.2013.06.011

Please cite this article in press as: S. Wang, etal., Accelerating dissipative particle dynamics with multiple GPUs, Computer Physics Communications (2013),




Download English Version:

hitps://daneshyari.com/en/article/10349524

Download Persian Version:

https://daneshyari.com/article/10349524

Daneshyari.com


https://daneshyari.com/en/article/10349524
https://daneshyari.com/article/10349524
https://daneshyari.com

