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a b s t r a c t

A particular type of open quantum system dynamics is achieved by embedding a quantum system in
a classical thermal bath. Such a bath can be represented in terms of the non-Hamiltonian evolution of
few variables by means of the so-called Nosè–Hoover Power thermostat. The classical dynamics of the
thermostat is integrated by means of time-reversible measure-preserving algorithms. In this work we
show that the Nosè–Hoover Power thermostat, when applied to the dissipative evolution of a quantum
spin, provides numerical results which agree with those obtained using Nosè–Hoover chains. However,
since a fewer number of variables are needed to achieve the correct sampling of the canonical distribution
at equilibrium, the Nosè–Hoover Power thermostat promises to be better suited for the simulation of low
dimensional open quantum system on discrete grids.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The open dynamics of quantum systems is usually formulated
by means of influence functionals [1] or master equations [2]. Al-
ternatively, a Hamiltonian approach [3] requires one to embed the
system of interest in a bath with a great number of degrees of
freedom, to calculate the evolution of the total system, and to in-
tegrate out the coordinates of the bath in order to finally obtain
an open system description. The numerical implementation of this
latter technique would be too demanding computationally. A clas-
sical bath of degrees of freedom can also be considered in order
to generate the open dynamics of a quantum subsystem. In this
case, it has been recently shown how to formulate master equa-
tions which are thermodynamically consistent [4–9]. Within the
Hamiltonian approach to dissipation [3], one can obtain a phase
space representation of the bath by performing a partial Wigner
transform only over the coordinates coupled to the quantum sub-
system [10]. Upon taking a suitable approximation, a combined
quantum–classical law of motion for the quantum subsystem cou-
pled to the bath coordinates is obtained [11]. This representation
still requires one to calculate the dynamics of the total system and
it is also computationally demanding. However, once the classical
bath coordinates are represented in phase space through a par-
tial Wigner transform, well established non-Hamiltonian molec-
ular dynamics equations of motion [12–15] become available in
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order to represent the thermal bath by means of a minimal num-
ber of degrees of freedom. Hence, one can use a non-Hamiltonian
bath with few degrees of freedom to simulate on the computer a
Hamiltonian bath with many degrees of freedom. This approach
has been recently suggested in [16,17]. In particular, in Ref. [17]
the dynamics was represented in terms of a swarm of trajectories
and the Nosè–Hoover chains (NHC) [18] were used to simulate the
thermal bath. However, there are many instances in which the dy-
namics of open quantum systemsmight be represented on discrete
numerical grids. In such cases, the thermostat variables of the NHC
will increase the dimensionality of the grids and one would be in-
terested in having an efficient thermostat with the smallest pos-
sible number of additional degrees of freedom. The Nosè–Hoover
(NH) thermostat uses fewer variables than the NHC; however, it is
not able to sample the canonical distribution for stiff systems.

Hence, in this work we adopt the so called Nosè–Hoover Power
(NHP) thermostat [12]. Such a thermostat uses the same number of
variables as the NH and is defined by a set of equations of motion
that, using only two additional phase space variables, are able to
provide a correct sampling of the canonical distribution function
for stiff systems. The Nosè–Hoover Chain (NHC) thermostat [18] is
also able to produce chaotic dynamics, but it requires at least four
additional thermostat variables in phase space and so does the Bul-
gac–Kusnezov (BK) thermostat [19–21]. Since our final aim is to
implement the thermostat in quantum–classical dynamics, in or-
der to simulate a thermal environment interactingwith a quantum
system, the NHP thermostat has the nice feature of generating a
thermal bath by means of the smallest possible number of degrees
of freedom. In this work, we adopt the time-reversible measure-
preserving algorithms introduced by Ezra [22] (and recently ap-
plied to various constant-temperature equations of motion [23])
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and derive an integrator for the classical NHP thermostat. The stan-
dard test for a non-Hamiltonian thermostat is a stiff harmonic os-
cillator, with potential V (R) = (K/2)R2. We have numerically
studied such a system in order to test the NHP thermostat and the
measure-preserving integrator. Then the NHP thermostat is gener-
alized to quantum–classical dynamics in order to be applied to the
study of quantum systems embedded in a classical thermal bath.

This paper is organized as follows. In Section 2we briefly sketch
classical NHP dynamics and formulate time-reversible measure-
preserving algorithms for its integration. In Section 3 we extend
the NHP thermostat to quantum–classical dynamics and apply it
to describe the relaxation of an excited spin in a thermal bath.
Conclusions and perspectives are discussed in Section 4.

2. Classical Nosè–Hoover power thermostat

The NHP thermostat was introduced in [12]. Here we briefly
sketch its theory and provide an algorithm of integration based
on the elegant time-reversible measure-preserving approach of
Ezra [22].

Consider the Hamiltonian describing a classical system of phys-
ical interest

HC =
P2

2M
+ V (R), (1)

where R and P are the coordinates and momenta, respectively,
M are the masses and V (R) is the interaction potential. The NHP
Hamiltonian is then defined as

HNHP
= HC +

P2
η

2Mη

+ gkBTη, (2)

where η is the fictitious thermostat variable, Pη is its associated
momentum, Mη is an inertial parameter controlling the dynami-
cal properties of the thermostat, kB is the Boltzmann constant, T
is the temperature of the thermal bath, and g is a constant equal
to the number of coordinates R whose temperature needs to be
controlled. The extended system Hamiltonian in Eq. (2) is identi-
cal to the original Nosè–Hoover Hamiltonian. The NHP thermostat
requires the introduction of the antisymmetric matrix [12]

B =

 0 0 1 sP/M
0 0 0 1
−1 0 0 −P
−sP/M −1 P 0

 , (3)

where s is a free-parameter with the dimension of time. Hence, the
corresponding non-Hamiltonian equations of motion are defined
by means of a generalized bracket [12,13]

Ẋ =

X,HNHP

B
=


jk

∂X
∂Xj

Bjk
∂HNHP

∂Xk
, (4)

where X = (R, η, P, Pη). The equations of motion (4) have a phase
space compressibility

κ =

jk

∂Bjk

∂Xj

∂HNHP

∂Xk
= −gη̇. (5)

FromEq. (5), using techniqueswhich have nowbecome standard in
non-Hamiltonian dynamics with a conserved energy [12–15], one
can prove that the equilibrium distribution, followed by the dy-
namical sampling of the physical coordinates (R, P), has a canon-
ical form. In other words, the NHP dynamics of the coordinates
(R, η, P, Pη), which admits the conserved Hamiltonian HNHP, sim-
ulates the open dynamics of the physical degrees of freedom (R, P)
in the canonical thermodynamic ensemble.

As shown by Ezra in [22], the generalized antisymmetric struc-
ture of the conservative non-Hamiltonian Eqs. (4) can be exploited
to introduce measure-preserving time-reversible algorithms. For
NHP dynamics one can split the Liouville operator as

L =
4

α=1

Lα, (6)

where each Lα , defined as

Lα = Bjk
∂HNHP

α

∂Xk

∂

∂Xj
, (7)

preserves the invariant measure of phase space [22]. The NHP
Hamiltonian can be naturally split into the sum of four terms HNHP

=
4

α=1 Hα , where

H1 =
P2

2M
(8)

H2 = V (R) (9)

H3 =
P2

η

2Mη

(10)

H4 = gkBTη. (11)

This leads to the following explicit form of the Liouville operators:

L1 =
P
M

∂

∂R
+

P2

M
∂

∂Pη

(12)

L2 = −
∂V
∂R


∂

∂P
+ s

P
M

∂

∂Pη


(13)

L3 =
Pη

Mη


s
P
M

∂

∂R
+

∂

∂η
− P

∂

∂P


(14)

L4 = −gkBT
∂

∂Pη

. (15)

It is useful to combine L1 and L4 together by defining LA = L1 + L4
and to make the notation homogeneous also defining LB = L2 and
LC = L3. Denoting a single numerical time step as τ , one can in-
troduce the propagators associated with the Liouville operators in
Eqs. (12)–(15) as

UY (τ ) = exp [τLY ] Y = A, B, C . (16)

Apossiblemeasure-preserving time integrator for theNHPdynam-
ics is then determined by the approximated propagator

U(τ ) = UB(τ/2)UC (τ/2)UA(τ )UC (τ/2)UB(τ/2)

+O(τ 3). (17)

The action of the propagators UY (τ ), Y = A, B, C is defined below:

Pη → Pη +
τ s
M

FR

P +

τ

2
FR


P → P + τFR


: UB (τ ) (18)

η→ η + τ
Pη

Mη

R→ R+
s
M

P

1− exp


−τ

Pη

Mη


P → P exp


−τ

Pη

Mη




: UC (τ ) , (19)

R→ R+ τ
P
M

Pη → Pη + τFp


: UA(h) (20)
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