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a b s t r a c t

In Density Functional Theory simulations based on the LAPW method, each self-consistent field cycle
comprises dozens of large dense generalized eigenproblems. In contrast to real-spacemethods, eigenpairs
solving for problems at distinct cycles have either been believed to be independent or at most very
loosely connected. In a recent study (Di Napoli et al., 2012) [13], it was demonstrated that, contrary to
belief, successive eigenproblems in a sequence are strongly correlated with one another. In particular,
by monitoring the subspace angles between eigenvectors of successive eigenproblems, it was shown that
these angles decrease noticeably after the first few iterations and become close to collinear. This last result
suggests that we canmanipulate the eigenvectors, solving for a specific eigenproblem in a sequence, as an
approximate solution for the following eigenproblem. In this workwe present results that are in line with
this intuition. We provide numerical examples where opportunely selected block iterative eigensolvers
benefit from the reuse of eigenvectors by achieving a substantial speed-up. The results presented will
eventually open theway to awidespreaduse of block iterative eigensolvers in ab initio electronic structure
codes based on the LAPW approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Materials simulations based on Density Functional Theory [1]
(DFT) methods have at their core a set of partial differential
equations (Kohn–Sham [2]) which eventually lead to a non-linear
generalized eigenvalue problem. Solving the latter directly is a
daunting task and a numerical iterative self-consistent approach
is preferred. It starts off by inputting an approximate electronic
charge density to a cyclic processwithinwhich a linearized version
of the eigenvalue problem is initialized and solved. At the end
of each cycle a new charge density is computed and compared
with the initial one. Self-consistency is reached when the distance
between the input and output densities is below a certain required
threshold; the process is then said to have converged. The entire
simulation results in a series of so-called outer-iteration cycles
often referred to as self-consistent field iterations.
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Roughly speaking, all the existing DFT-based methods dif-
fer from each other by the choice of linearization scheme (also
denoted as discretization), and by the choice of the effective
Kohn–Sham (KS) potential. There are three discretization strate-
gies commonly in use: (1) manipulation of localized functions
(Gaussians, etc.), (2) expansion of the eigenfunctions over a plane
wave basis set, and (3) discretization of the KS equations over a
lattice in real space. While the first method is almost exclusively
used in Quantum Chemistry the last two are widely used in Mate-
rials Science and present a series of pros and cons. The plane wave
expansion leads to Hamiltonianswith kinetic energy terms only on
the main diagonal and are well suited to simulate solid crystals. In
turn this discretization needs to approximate the Coulomb poten-
tial near the nuclei substituting it with a smooth pseudo-potential.
In real-space discretization, potential terms in the Hamiltonian de-
cay exponentially away from the diagonal [3] giving rise to quite
sparse and large eigenvalue problems. This strategy is well suited
mostly for disordered systems and insulators.

Among the plane wave strategies, the Full-Potential Linearized
Augmented Plane Wave (FLAPW) [4,5] method constitutes one
of the most precise frameworks for simulating transition metals
and magnetic systems. The Kohn–Sham equations are discretized
using a mix of radial and plane wave functions (see Section 2),
parametrized by a vector k within the Brillouin zone of the mo-
mentum lattice. At each outer-iteration ℓ a set of eigenpencils P (ℓ)k ,
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labeled by k, is initialized and solved. Because FLAPW uses full-
potential together with a partial plane wave expansion, each P (ℓ)k
is a dense andHermitian generalized eigenvalue problem; its size n
depends linearly –with a large pre-factor – on the number of atoms
considered in a simulation, and typically ranges between 2000 and
20,000. Only a relatively small percentage of the bottom end of the
spectrum is required, never exceeding 15%–20%, and often quite
less.

In this work we consider sequences of generalized Hermitian
eigenvalue problems as they arise in FLAPW. In this context a
sequence is a set of N generalized eigenproblems identified by a
progressive index ℓ

{P (ℓ)} .= P (1), . . . , P (N); P (ℓ) : A(ℓ)x = λB(ℓ)x. (1)

Within a sequence each eigenproblem is characterized by a
Hermitian indefinite matrix A and a positive definite Hermitian
matrix B. This setup is generally referred to as a matrix pencil or
eigenpencil and it is known to have a bounded discrete spectrum
with real positive and negative eigenvalues

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax. (2)

Eigenpencils usually admit n distinct eigenvectors xi satisfying a B-
orthonormality relation (xi, B xj) = δij even when they correspond
to identical eigenvalues. While in general B ≠ I , in the special case
B = I the eigenpencil becomes a standard eigenvalue problem, and
the orthonormality relation reduces to the standard (xi, xj) = δij.

In current codes implementing FLAPW [6–10], each sequence
of eigenpencils {P (ℓ)} is handled verymuch as a set of uncorrelated
problems: each P (ℓ) is solved in complete isolation from any other
and independently passed as input to a prepackaged eigensolver of
a standard library – like LAPACK [11] or its parallel version ScaLA-
PACK [12] – which outputs the desired portion of eigenspectrum
and corresponding eigenvectors. The eigensolver is thus used as
a black box and has no knowledge of the eigenproblems’ spectral
properties nor of the application from which they originated. As
much as this process grants standardization and reliability, it is also
far from being optimal. What is ‘‘lost in translation’’ is the possibil-
ity to render manifest the correlation between eigenpencils of the
sequence {P (ℓ)} in terms of precise numerical properties which are
then passed to a solver that can exploit them.

In a recent work [13] it has been reported that eigenpencils
with a successive outer-iteration index ℓ and the same k-vector
are strongly correlated. Consequently, problems in a sequence are
not only connected by a progressive index but, as for a sequence
of numbers, there is a relation linking them. In FLAPW, such a nu-
merical correlation become evident in theway the subspace angles
between eigenvectors evolve from larger to smaller values as the
sequence progresses toward higher outer-iteration indices [13]. It
needs to be stressed that, contrary to what happens in real-space
methods, the correlation between eigenvectors is a new and unex-
pected feature of FLAPW-based methods: since the eigenfunctions
are delocalized and the function basis set is modified at each suc-
cessive outer-iteration, it had been common belief that correlation
was an unlikely phenomenon.

With evidence of the contrary in hand, it becomes natural to
consider eigenvectors of P (ℓ) as a set of approximate solutions that
can be used by an appropriate eigensolver to accelerate the solu-
tion of P (ℓ+1). The novelty of our contribution consists in show-
ing that, by exploiting the collinearity between vectors of adjacent
problems, we can significantly improve the performance of certain
classes of eigensolvers. Since no eigensolver (QR,MRRR, Divide and
Conquer, etc.) for dense problems accepts as input approximate
eigenvectors, our strategy can only be carried out by using itera-
tive eigensolvers. In the rest of the paperwe first illustrate, through

numerical experiments, the success of this strategy for three dis-
tinct block iterative eigensolvers, each representing a specific class
of available methods. Then we focus on one of these solvers, de-
velop a C language version and obtain similar results with empha-
sis on high-performance and scalability.

In Section 2 we first give a short description of how sequences
of eigenproblems arise in DFT and how they translate into appar-
ently uncorrelated dense eigenvalue problems.We then proceed to
briefly report on the correlation between adjacent eigenproblems
as illustrated in [13]. Our core results are presented in Section 3
where we introduce the selected block iterative eigensolvers fol-
lowed by a description of the experimental setup and the numer-
ical tests performed. We summarize our results in Section 4 and
conclude with future work and acknowledgments.

2. Sequences of correlated eigenproblems

In this section we illustrate in some detail how sequences of
eigenpencils arise in DFT. We start with a brief recall of the fun-
damentals of quantum mechanics, explain the need for an effec-
tive theory dealing with many particles and describe the FLAPW
method self-consistent cycle. It is then shown why correlation
among eigenproblems in a sequence is unexpected, and how the
presence of such a correlation was exposed by looking at the evo-
lution of eigenvectors as a function of the outer-iteration cycle
index ℓ.

2.1. The rise of sequences in density functional theory

The electronic structure of a quantum mechanical system with
L atoms and M electrons is described by the Schrödinger equation

HΦ(x1; s1, . . . , xn; sn) = EΦ(x1; s1, . . . , xn; sn). (3)

H = − h̄2
2m
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is theHamil-

tonian characterizing the dynamics of the electrons whose posi-
tions and spins are indicated by x and s respectively. E represents
the energy of the system while Φ is the high-dimensional anti-
symmetric electronic wave function solving for Eq. (3). Already at
this stage the Schrödinger equation looks very much like an eigen-
value problem, unfortunately one that is already very challenging
to solve for valuesM, L ≥ 2.

During the 1960s, a series of simplifications were introduced
based on rigorous theorems [2,14] where the exact high-
dimensional Eq. (3) was replaced by a large set of one-dimensional
Kohn–Sham equations

∀ a solve ĤKSφa(r) =

−

h̄2

2m
∇

2
+ V0(r)


φa(r) = εaφa(r). (4)

The most important element in these equations is the substitution
of the last two terms of H with an effective potential V0(r)[n]
that functionally depends on the charge density n(r): a function
of all the one-particle wave functions φa(r). Because of this
interdependence between V0 and φa(r), Eq. (4) constitutes a set of
non-linear partial differential equations.

Typically this set of equations is solved using an outer-iterative
self-consistent cycle: it starts off with an initial charge density
ninit(r), proceeds through a series of iterations and converges to
a final density nN(r) such that |n(N) − n(N−1)| < η, with η as
an a priori parameter. Convergence is achieved by an opportune
mixing between output density ni(r) and one or more previous
input densities nℓ<i(r). In the particular case of FLAPW the new
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