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a b s t r a c t

In this work, data fusion of multi-element XRF results from archaeological feature soils and regional
background soils was applied to assess the complementary value of geochemistry and machine-learning
on predictive modelling in archaeology.

Our principal aim was to integrate multiple data sources, train learning models for classification of
archaeological soils and background soils, and compare model predictions for three validation areas with
current archaeological interpretation and established predictive models. This was done using three su-
pervised machine-learning algorithms (k-nearest neighbors, support vector machines and artificial
neural networks) which were trained, cross-validated and tested. The validation areas included a high
archaeological potential area (n ¼ 247 samples), the Dutch province of Zeeland (n ¼ 261 samples) and an
excavated imprint of an ancient farmhouse (n ¼ 38 samples). The predictive models showed good overall
performance and correctly classified about 95% of all test instances. According to the learning models, the
first validation site has a top soil horizon that shows limited parallels with archaeological horizons used
in model training, whereas features of high archaeological probability become more apparent below this
horizon. This is in good correspondence with geochemical depth profiles and current archaeological
interpretation. As for the second validation site, the models highlighted several archaeological hotspots
that to some extend spatially coincide with areas of high archaeological potential as indicated by
established predictive modelling. Reversely, the classifiers attributed high archaeological potential status
to the most southern region of Zeeland, thereby complementing established modelling results. For the
third validation site none of the instances were correctly classified and these results clearly show the
limitations of geochemical predictive modelling of significantly different soil types (fine-to-coarse sands)
compared to the training set (clayey sands).

Present proof-of-concept study shows that modelling of multiple-source geochemical soil data using
machine-learning algorithms can be successfully accomplished and that model predictions nicely
complement current interpretation and/or established archeological predictive modelling of areas of
archaeological interest. Limitations of our approach were found to reside in lithological differences be-
tween sites used for model training and prediction sites.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Domestic and agricultural activities in the past have had a sig-
nificant impact on soil processes and the present chemical soil

composition. Due to the different uses of space, habitation areas
may thus hold chemical anomalies that coincide spatially with
archaeological features (see e.g., Griffith, 1981; Linderhold and
Lundberg, 1994; Middleton and Price, 1996; Pierce et al., 1998;
Fernandez et al., 2002; Knudson et al., 2004; Terry et al., 2004;
Wilson et al., 2005). Detection and delineation of such areas is of
value because it aids defining the focus of archaeological research
and excavations. Modern agricultural activities and soil pollution
are, however, likely to obscure ancient chemical soil anomalies.
Hence, it is essential to attain a geochemical understanding of
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archaeological sites, with reference to the relationship between
chemical data, ancient and modern anthropogenic activities and
soil pollution. Multi-element soil analyses yield a detailed, yet
complex account of data for this purpose, as shown by e.g. Aston
et al. (1998), Entwistle et al. (1998, 2000), Schlezinger and Howes
(2000), Eckel et al. (2002), Parnell et al. (2002), Sullivan and
Kealhofer (2004), Wells (2004), Cook et al. (2005) and Oonk et al.
(2009a, b). However, controversy exists on how to assess multi-
element anomalies in soils and a multitude of unsupervised
modelling techniques have been proposed and tested. These
include various on-site vs. off-site element ratios (i.e. enrichment
factors), latent variable models (e.g. factor analysis, principal
component analysis) and clustering techniques. Geochemical pre-
dictive modelling through supervised machine-learning provides
another means to analyze patterns in multivariate (geochemical)
data, and identify and locate soil anomalies. Although such
methods have recently seen successful application in e.g. geological
prospection, and geological and mineral mapping (Ingham et al.,
2014; Baudron et al., 2013; Abedi and Norouzi, 2012, Abedi et al.,
2012), none has found use in archaeological applications so far.
Strong parallels exist between these geological applications and
archaeological prospection, and verifies that a machine-learning
approach based on geochemical data is feasible for archaeological
predictive modelling. In contrast to unsupervised methods, super-
vised machine-learning relies on prior knowledge of a geochemical
system. Thus, class memberships need to be known and assigned to
each instance in order to constitute a training dataset. The labeled
geochemical data is thence used to construct models that proxy for
class characteristics. Validation steps are usually applied to opti-
mize model parameters and select the best performing model
which can be used to predict class memberships of new instances.

This study was set out to test the feasibility of archaeological
predictive modelling by means of combined multi-element soil
profiling and supervised machine-learning. Note that machine-
learning is essentially a black box approach, which, in this
respect, utilizes covariance in multidimensional data in order to
characterize various patterns of variation in the training data.
Spatial anomalies, as predicted by the models constructed and
applied in this work can thus best be regarded as different patterns
of variation rather than actual geochemical anomalies.

Soil XRF analysis data from previously published Dutch
archaeological prospection studies and regional geochemical sur-
veys were labeled with their respective classification status
(archaeology vs. no-archaeology) and assessed by three machine-
learning algorithms; weighted k-nearest neighbors analysis
(kNN), support vector machines (SVM) and artificial neural net-
works (NN).

K-nearest neighbors algorithms are considered the simplest of
learning algorithms; training of a kNN classifier is merely a process
of storing features and classification labels Classification is then
based on calculated distance measures and a voting scheme. The
here applied weighted kNN algorithm additionally includes trans-
formation of distance measures to similarity measures using a
kernel function. This makes the technique more robust towards k-
values that lead to high misclassification rates during training.

Support vector machines use non-linear decision boundaries in
high dimensional variable space to train classifiers. The rationale
behind this is that for non-linearly separable two-class data there
are an infinite number of hyperplanes that divide the classes. To
select a hyperplane that optimally separates the two classes (i.e. a
decision boundary) a subset of training samples, also known as
support vectors, is used. With regards to cases that are not linear
separable SVM make use of kernels that transform input variables
and allows to separate non-linear separable support vectors using a
linear hyperplane. An optimal decision boundary is then

represented by the maximal margin (M) between support vectors,
which in turn is determined by penalizingmisclassifications using a
cost parameter (C).

Lastly, NN use a network of primitive functions arranged in
layers that receive multiple inputs that are weighted according to
their ability to discriminate classes. Hereby, different function types
and network configurations are created, and hence this results in
different models. During training, network connection weights are
adjusted so as to minimize errors due to separation of inputs and
classes, while convergence proceeds until between-iteration errors
reach a decay-threshold.

In this study, a 75% portion of the total dataset was used to train
the models, whereas the remaining data was used for model
testing. Best performing models were then applied to multi-
element data from three distinct validation areas (VA1, VA2 and
VA3). Here, VA1 concerns an area of high archaeological potential
and was chosen to i) assess the spatial probability of ancient
anthropogenic impact at different depths (ca. 20, 40 and 60 cm
below surface level) and ii) compare these results with field survey
and excavation findings. Additional geochemical data from a much
larger area (VA2) was interrogated by the models in order to test
similarities between established predictive modelling and
geochemistry based modelling. Here, established modelling is
regarded as modelling the archaeological impact of an area by
means of e.g. coring campaigns, surface finds, physical- and his-
torical geography. Lastly, samples from an archaeological house
plan embedded in fine-to-coarse sands were classified so as to test
the effects of alternative site lithology and possible limitations of
the here presented approach.

2. Materials and methods

2.1. Study areas

2.1.1. Training and testing areas
For model training, geochemical data from two archaeological

sites was used. These sites (at Tiel and Zijderveld) are situated in the
Rhine/Meuse delta in the center of the Netherlands and consist
mainly of fluvial clayey sands. All sites were previously excavated
and could be dated to 240e270 AD (Tiel) and 1500e1100 BC (Zij-
derveld). Samples were all taken inside house plans, whilst a small
sample set (n ¼ 10) from the Tiel site was taken off-site. Further
details on the lithology and archaeology of these sites can be found
in Oonk et al., 2009a. In addition, Dutch geochemical background
data was used for non-archaeological training instances (see
below).

2.1.2. Validation area 1
Validation area 1 is located in the southeastern part of The

Netherlands along the Meuse river (see Fig. 1) near to the village of
Borgharen. The area mainly consists of alkaline (pHwater ¼ 7.2e8.4)
clayey river sediments deposited during floods. Primary sedimen-
tary sequences, consisting of yellow to brown sandy clays, were
deposited on top of fluvial sands and gravels during the Weichse-
lien period. These deposits also constitute the immediate parent
soil material. Also present in these sequences are distinct grayish
layers that consist of sands, gravels and charcoal fragments.
Superimposed on these layers are brownish calcareous and silty
clays deposited during the early Holocene. Being part of a gravel
rich point bar, the study site is manifested as a slightly elevated area
at 43.9 ± 0.37 m above sea level. The study area itself has little
topography except for a minor elevation at the far south of the area
(44.40e44.60 m above sea level).

Pollution of the area is likely to be extensive, given the long-
term agricultural activities adding (artificial) manure and

S. Oonk, J. Spijker / Journal of Archaeological Science 59 (2015) 80e88 81



Download English Version:

https://daneshyari.com/en/article/1035358

Download Persian Version:

https://daneshyari.com/article/1035358

Daneshyari.com

https://daneshyari.com/en/article/1035358
https://daneshyari.com/article/1035358
https://daneshyari.com

