
Pattern Recognition Letters 116 (2018) 97–100

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Applications of single-operator edit distances for permuted sequences

Jeffrey Uhlmann

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA

a r t i c l e i n f o

Article history:

Received 6 October 2017

Available online 21 September 2018

MSC:

41A05

41A10

65D05

65D17

Keywords:

Edit distance

Permutations

Data compression

a b s t r a c t

In this paper we consider single-operator distance functions for comparing sequences/strings that are

equivalent up to permutation. It is shown that these distance functions admit smaller backtrace expres-

sions than conventional edit distance. Results are provided showing that this reduced backtrace complex-

ity can be exploited for data compression and post-analysis modeling of packet delays in a communica-

tions network application.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Edit distance and its specialized variants, e.g., Levenshtein, are

fundamental tools for pattern recognition because they can re-

veal structural similarities between complex objects [8] . They are

applied widely for the comparison of textual and genomic se-

quences [10,17] and for complex tree and graph structures [2,13,14] .

Closely related to the calculation of edit distance is the generation

of a backtrace , i.e., a minimal sequence of edit operations to trans-

form one sequence to another. This sequence of operations can be

regarded as a compressed representation of the second sequence

given the first sequence. In a genomic application, for example, a

“typical” baseline sequence could be identified/defined so that all

related sequences could then be represented in compressed form

as a sequence of edit operations applied with respect to the base-

line sequence.

As an example, suppose we are given two sequences. The first

consists of n distinct symbols, i.e., it is a permutation, and the sec-

ond sequence is identical to the first except that the last two sym-

bols are interchanged (swapped). The two sequences can be stored

in compressed form by writing out the first sequence verbatim fol-

lowed by an instruction saying that the second sequence can be

obtained from the first one just by swapping the last two symbols.

This reduces the space requirement for storing the two sequences

by almost 50% for large n , and this level of compression cannot be

achieved using standard compression algorithms, e.g., Huffman en-

E-mail address: uhlmannj@missouri.edu

coding, which assume that some symbols appear more frequently

than others.

In this paper we consider the application of edit distance in-

formation to analyze and compress permutation-equivalent se-

quences, i.e., sequences representing orderings of the same set of

distinct symbols. As will be shown, this assumption can provide

improved backtrace compression by allowing the effective number

of primitive edit operations to be reduced in certain practical ap-

plications.

2. Backtrace complexity

Conventional string edit distance is defined in terms of three

primitive edit operations: insertion, deletion , and substitution . The

third operation, substitution, can be expressed as a deletion fol-

lowed by an insertion, so it is redundant if its weighted cost equals

the sum of the costs of deletion and insertion. Assuming unit cost

for each operation, the backtrace for strings s 1 and s 2 , d(s 1 , s 2) = k,

is a sequence of k operations that transforms s 1 to s 2 .

In the earlier example involving a sequence s 1 of n distinct

symbols, with another sequence s 2 that is equivalent to s 1 except

that its last two symbols are swapped, the edit distance between

the two sequences is 2. The backtrace obtained from calculating

this edit distance must give two edit operations that transform s 1
to s 2 . In this case the two operations could be a deletion followed

by an insertion. More specifically, deleting the last symbol of s 1 ,

and then inserting that symbol before its predecessor, has the ef-

fect of swapping the last two symbols of s 1 to give s 2 . The back-

trace is not generally unique, and in this case the same result could

be achieved with two subsitutions.

https://doi.org/10.1016/j.patrec.2018.09.021

0167-8655/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.patrec.2018.09.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.09.021&domain=pdf
mailto:uhlmannj@missouri.edu
https://doi.org/10.1016/j.patrec.2018.09.021

98 J. Uhlmann / Pattern Recognition Letters 116 (2018) 97–100

If s 1 is written out explicitly, followed by some kind of rep-

resentation of the two edit operations sufficient to obtain s 2 , the

amount of space saved depends on the length (number of bits)

needed to represent the backtrace, i.e., to specify the two edit op-

erations. For general edit distance there are 3 edit operations (in-

sertion, deletion, and substitution) and they can be distinguished

using 2 bits because � log 2 (3) � = 2 . For example, 00 could repre-

sent Insert , 01 could represent Delete , and 10 could represent Sub-

stitute . It then remains to determine how many bits are needed to

identify their respective arguments, e.g., to specify the symbol and

location for an insertion operation.

If edit distance is applied to two strings s 1 and s 2 of length n ,

the number of bits required to represent each operation in a back-

trace can be explicitly calculated:

1. An operator ID is required to uniquely identify which of the

three edit operations is to be performed: 2 bits.

2. Deletion requires a single argument giving the index of the

symbol to be deleted: � log 2 (n) � bits.

3. Substitution requires two arguments giving, respectively, the in-

dex of the character to be replaced and the symbol to replace

it: 2 ×� log 2 (n) � bits.

4. Insertion requires two arguments giving, respectively, the sym-

bol to insert and the index of a location (which may include the

position before the first symbol of the sequence or after the last

symbol of the sequence) at which the symbol is to be inserted:

� log 2 (n) � + � log 2 (n + 1) � bits.

In addition to the number of bits required for each of the k

operations, a preamble (header) of � log 2 (n) � bits are required to

specify the total number of operations that follow, i.e., the edit dis-

tance.

Assuming that all three operations appear with the same fre-

quency, the expected total number of bits can be slightly overesti-

mated as:

� log 2 (n) �
of operations

+ 2 k
op ID

+ 2 k · � log 2 (n) �
avg argument length

(1)

where the overestimate derives from assuming that an extra bit

may be required for the location index for each insert opera-

tion (which leads to rounding of the coefficient on the expected

argument-length term from 5/3 to 2).

Given that there are typically many equivalent backtraces, i.e.,

many different sequences of k operations, there would seem to be

an advantage to choosing the one that uses the most deletions,

since a Delete requires fewer bits because it has only one argu-

ment. In the case of permutation-equivalent strings, however, sym-

bols are neither created nor eliminated so deletion must have a

corresponding insertion or substitution, thus a lower relative cost

for deletion cannot translate to reduced backtrace size. More gen-

erally, it can be observed that combinations of insertions, deletions,

and substitutions can essentially only result in the moving of sym-

bols. This motivates the following definition of a primitive edit op-

eration:

Definition : A move operation applied to a single symbol in a

sequence is defined to be a relocation of the symbol from one

index position to another index position, i.e., equivalent to dele-

tion of that symbol from the sequence followed by its insertion

at a different location in the sequence.

Given permutation-equivalent sequences s 1 and s 2 , a move-

based edit distance between them can be defined as the number

of symbol moves required to transform s 1 into s 2 . Such an edit dis-

tance based only on move operations is sometimes referred to as

permutation distance or Ulam distance [1] .

It is reasonable to expect permutation distance based only on

move operations to be exactly half that of ordinary edit distance

restricted to unit-cost insertion and deletion operations. While this

is true, the backtrace size is significantly reduced in the case of

single-move operations because there is no overhead required to

distinguish between insert and delete operators. This leads to a

precise estimate of its backtrace bit requirement 1 :

� log 2 (n) � + 2 k · � log 2 (n) � (2)

which represents a savings of almost 2 k bits compared to standard

edit distance due to elimination of 2-bit operation designations.

A concrete example may provide a more intuitive picture of

how the preceding applies to the compressed representation of

permutation-equivalent sequences. Consider the following two se-

quences:

s 1 : u v w x y z (3)

s 2 : u x v y w z (4)

They can be stored explicitly as:

u v w x y z u x v y w z (5)

or in compressed form (only slightly compressed in this case) as s 1
followed by the move operations sufficient to obtain s 2 :

u v w x y z 2 3 2 4 1 (6)

where the first 2 signifies that the edit distance between s 1 and

s 2 is 2, therefore two move operations will follow. The subsequent

“3 2” signifies that the symbol at location 3 (indexing from 0) of s 1
is to move to position 2, and “4 1” says that the symbol at location

4 of the result should move to position 1.

Applications of the metric properties of edit distance for effi-

cient database search [6,9,16] and clustering [7,15] have been ex-

tensively studied for more than 25 years. In the following section

we demonstrate how single-operation edit distances can be used

in a very different type of application to both analyze and – as

a byproduct – compress data logged from a communications net-

work for purposes of post-analysis modeling of packet delays.

3. Permuted sequence analysis and compression

Consider a network of V nodes in which each node may com-

municate with every other node via links that connect each node

to a non-empty subset of the remaining nodes in the network. As-

suming the number of links E is O (V), i.e., the network can be rep-

resented as a sparse graph, the path a packet travels from node i

to node j will involve a variable number of links such that the total

travel time is a variable that depends both on the paths that ex-

ist between nodes i and j and also the characteristics (e.g., includ-

ing environmental variables) of the links comprising those paths

at the time of traversal. Mitigating the effect of such delays is a

critical challenge in many distributed information processing ap-

plications [4,12] .

One way to assess the delay properties of the network is to se-

lect a particular node, node 0, to send a sequence s 0 of n packets to

all of the other V − 1 nodes. This permits the temporal sequence

s i as received by node i to be compared to the original sequence s 0 ,

with any deviations attributable to packet delays. The minimal se-

quence of move operations to transform the sequence received at

node i to/from the sequence sent by node 0, i.e., the permutation-

distance backtrace, provides an explicit characterization of the pat-

tern of delays. As a secondary benefit it can be used to compress

the collected data for subsequent analysis.

1 It should be noted that the location argument is strictly � log 2 (n) � (not

� log 2 (n + 1) �) , because after a deletion the subsequent insertion is applied to a

sequence of n − 1 symbols.

Download English Version:

https://daneshyari.com/en/article/10362188

Download Persian Version:

https://daneshyari.com/article/10362188

Daneshyari.com

https://daneshyari.com/en/article/10362188
https://daneshyari.com/article/10362188
https://daneshyari.com

