
A cellular computing architecture for parallel memristive stateful logic

Eero Lehtonen a,n, Jari Tissari a, Jussi Poikonen b, Mika Laiho a, Lauri Koskinen a

a Technology Research Center, University of Turku, Joukahaisenkatu 1C, 20520 Turku, Finland
b Department of Communications and Networking, Aalto University, Espoo, Finland

a r t i c l e i n f o

Article history:
Received 9 March 2014
Received in revised form
3 September 2014
Accepted 12 September 2014

Keywords:
Memristor
Memristive crossbar
CMOL
Stateful logic
Implication logic

a b s t r a c t

We present a cellular memristive stateful logic computing architecture and demonstrate its operation
with computational examples such as vectorized XOR, circular shift, and content-addressable memory.
The considered architecture can perform parallel elementary memristor programming and stateful logic
operations, namely implication and converse nonimplication. The topology of the crossbar structure
used for computing can be dynamically reconfigured, enabling combinations of local and global
operations with varying granularity. In the CMOS cells used for controlling the memristors, we apply
a new type of capacitive keeper circuit, which allows for energy efficient implementation of logic
operations. The correct operation of this architecture is verified by detailed HSPICE simulations for a
structure containing eight memristive crossbars. This work presents a hardware platform which enables
future work on parallel stateful computing.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Memristive implication logic was originally proposed by Kuekes
in [1] as a way to perform logic on memristors. In this form of logic,
Boolean variables are represented by the low and high resistance
states RON and ROFF of binary memristors. This operation was first
demonstrated empirically in [2]; since then, various memristive
stateful logic operations and corresponding synthesis of Boolean
functions have been considered for example in [3–9].

Memristive stateful logic is inherently sequential, and as noted
already in [2], it is most efficiently used in parallel form in
memristive crossbar architectures. However, as demonstrated for
example in [6], a monolithic memristive crossbar circuit allows only
limited parallelism. Solutions to partitioning crossbar circuits to allow
increased parallelism have been proposed for example in [6,9,8,10].
Specifically Kim et al. [8] presents how memristive stateful logic can
be performed in a CMOL-type [11] FPNI architecture [12], which
allows pipelining stateful operations. A similar approach is discussed
in [9], where for example a stateful eight-bit adder benefiting from
crossbar partitioning is demonstrated. However, in the previously
presented parallel stateful computing architectures the fan-out and
fan-in of elementary stateful logic operations is limited. In this work
we show how the keeper circuits presented in [13,6] can be used to
facilitate large fan-in and fan-out in parallel stateful logic operations.

In the following we present a circuit architecture designed for
efficient parallel stateful logic computing. This architecture con-
sists of an array of small memristive crossbar circuits which can
connected to form larger crossbars. We show how such an
architecture allows us to perform in parallel complex vector
operations using a relatively small number of sequential stateful
logic operations. We present a CMOS cell design with the objective
of minimizing the number of transistors per memristor required,
and show that this design allows the implementation of uncondi-
tional write operations and two stateful logic operations, enabling
the computation of arbitrary Boolean logic functions. Correct
operation of the circuit architecture is verified by detailed HSPICE
circuit simulations using 0:13 μm CMOS technology, and a mem-
ristor model whose characteristics are selected based on empirical
results presented in [14].

To demonstrate parallel stateful computing algorithms in large-
scale simulations, we developed a Matlab script language and its
compiler which generates from a list of commands the control
signals required in HSPICE simulations of the considered circuit.
These commands are used also in the following text to define
example computations. The main objective of this work is to propose
and simulate a hardware platform which enables future work on
parallel stateful computing.

The paper is organized as follows. In Section 2 we present the
memristor model and define the stateful logic operations used in
this work. In Section 3 we describe the cellular stateful logic
architecture and define its control signals. Implementation of
elementary write and logic operations and related compiler
commands are described in Section 4. Examples of parallel vector

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

http://dx.doi.org/10.1016/j.mejo.2014.09.005
0026-2692/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ358 23336963.
E-mail address: eero.lennart.lehtonen@utu.fi (E. Lehtonen).

Please cite this article as: E. Lehtonen, et al., A cellular computing architecture for parallel memristive stateful logic, Microelectron. J
(2014), http://dx.doi.org/10.1016/j.mejo.2014.09.005i

Microelectronics Journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2014.09.005
http://dx.doi.org/10.1016/j.mejo.2014.09.005
http://dx.doi.org/10.1016/j.mejo.2014.09.005
mailto:eero.lennart.lehtonen@utu.fi
http://dx.doi.org/10.1016/j.mejo.2014.09.005
http://dx.doi.org/10.1016/j.mejo.2014.09.005
http://dx.doi.org/10.1016/j.mejo.2014.09.005
http://dx.doi.org/10.1016/j.mejo.2014.09.005

operations and computations implemented using the considered
architecture are presented in Section 5. Section 6 concludes.

2. Background

2.1. Memristors

In this paper we consider the use of rectifying linear bistable
memristors in massively parallel logic computing. By rectifying
memristors we mean devices which pass significant current only
to the forward direction, while the switching behavior corre-
sponds to that of a nonrectifying bipolar memristor, that is,
positive voltages program the device into a more conductive state,
whereas negative voltages program the device towards a more
resistive state. In the following we define the mathematical model
of the memristors assumed in this work. This model is inspired by
the device demonstrated empirically in [14].

A memristor has a state variable wA ½0;1� which corresponds
to the value of its memristance Rm in the forward direction as
follows. When w¼0, the memristor is said to be in the OFF-state
corresponding to Rm ¼ ROFF. When w¼1, the memristor is said to
be in the ON-state, and Rm ¼ RON. Formally,

Rm ¼ ROFFðRON=ROFFÞw; vZ0
ROFF; vo0;

(
ð1Þ

where v is the voltage across the memristor in the forward
direction. In accordance with [14], we assume that ROFF ¼ 500 MΩ
and RON ¼ 500 kΩ.

The memristor is programmed towards the ON-state by
applying across it a voltage larger than a threshold voltage VTH.
Correspondingly applying a voltage more negative than �VTH

programs the memristor towards the OFF-state. When the voltage
across the memristor is between �VTH and VTH, the state of the
device is assumed to remain unchanged. Note that for simplicity, we
assume symmetric threshold voltages for programming to OFF- and
ON-states. In practice, these voltages may differ, as for example in
the device of [14]. Such asymmetry must be taken into account
when defining control voltages for programming and logic opera-
tions. The following dynamics are assumed for this bipolar mem-
ristor:

dw
dt

¼
αðv�VTHÞ; vZVTH

αðvþVTHÞ; vr�VTH

0 otherwise;

8><
>: ð2Þ

where α is a positive constant related to the programming rate, and
VTH ¼ 1 V. In this work we assume α¼ 125� 107 (Vs)�1; with this
value of α, a memristor initially in state w¼0 is programmed to
state w¼1 in 4 ns by applying þ1.2 V across it. Comparable
programming rates have been predicted for memristive devices in
[15], and reported empirically for example in [16,17]. It should be
noted that this memristor model is a very simplified one, for
example its programming rate depends piecewise linearly on the
applied voltage, and its threshold voltages are fixed, in contrast to
what is observed in many physical devices [18]. The main motiva-
tion of this work is to investigate a computing architecture with a
multitude of memristors, and the considered simple model allows
for efficient simulation of the presented circuitry. However, due to
this simplification, simulated values of operation durations and
energies should be considered only as suggestive, while physical
realizations of the considered circuits may have considerably
different characteristics.

In the simulations presented in this work we use a HSPICE
model of the above described memristor. A pinched hysteresis

curve of this memristor is depicted in Fig. 1. The SPICE netlist for
this simulation model is

.SUBCKT memristor P M w

þRon¼500k Roff¼500Meg vth¼1 vprog¼1.2

dwdtprog¼250e6 winit¼0 wmin¼0 wmax¼1

*State variable

Gsv 0 w value¼’sgn(V(P,M))*dwdtprog*absgeq(V(P,

M),vth)

*(abs(V(P,M))-vth)/(vprog-vth)*trunc(V(w),V

(P,M))’

Csv w 0 1

.IC V(w)¼winit

*I-V relation

Gmem P M value¼’V(P,M)/calcrecresistance(V(P,M),

V(w))’

*Auxiliary functions

.PARAM sign2(var)¼’(sgn(var)þ1)/2’

.PARAM trunc(var1,var2)¼’(sign2(var1-wmin)þ
sign2(var2))*

(sign2(wmax-var1)þsign2(-var2))/2’

.PARAM absgeq(var1,var2)¼’sign2(var1-var2)þ
sign2(-var2-var1)’

.PARAM calcresistance(w)¼’Roff*((Ron/Roff)**w)’

.PARAM calcrecresistance(var1,var2)¼’sign2

(var1)*

calcresistance(var2)þsign2(-var1)*Roff’

.ENDS memristor

2.2. Stateful logic

Stateful logic is a form of computational logic in which
devices both store and perform operations on logical values. When
implemented with memristors, Boolean variables are represented
by their memristances. Stateful logic operations are realized by
programming the states of a set of output memristors conditionally
to the states of a set of input memristors. An example of a circuit
performing memristive stateful logic is depicted in Fig. 2. Details of
memristive stateful logic have been discussed extensively for
example in [5,6]. In Section 3 we present a CMOS–memristor
circuit which implements two stateful logic operations: material
implication and converse nonimplication. These operations can be
used to sequentially compute the value of any Boolean function,

−1.5 −1 −0.5 0 0.5 1 1.5
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

Voltage (V)

C
ur

re
nt

 m
ag

ni
tu

de
 (A

)

Fig. 1. I–V curve of the rectifying memristor model used in this paper. The model
was driven with a sinusoidal input voltage with frequency 25 MHz and amplitude
1.2 V.

E. Lehtonen et al. / Microelectronics Journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: E. Lehtonen, et al., A cellular computing architecture for parallel memristive stateful logic, Microelectron. J
(2014), http://dx.doi.org/10.1016/j.mejo.2014.09.005i

http://dx.doi.org/10.1016/j.mejo.2014.09.005
http://dx.doi.org/10.1016/j.mejo.2014.09.005
http://dx.doi.org/10.1016/j.mejo.2014.09.005

Download English Version:

https://daneshyari.com/en/article/10364153

Download Persian Version:

https://daneshyari.com/article/10364153

Daneshyari.com

https://daneshyari.com/en/article/10364153
https://daneshyari.com/article/10364153
https://daneshyari.com

