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a b s t r a c t

In the field of disease mapping, little has been done to address the issue of analysing sparse health

datasets. We hypothesised that by modelling two outcomes simultaneously, one would be able to

better estimate the outcome with a sparse count. We tested this hypothesis utilising Bayesian models,

studying both birth defects and caesarean sections using data from two large, linked birth registries in

New South Wales from 1990 to 2004. We compared four spatial models across seven birth defects:

spina bifida, ventricular septal defect, OS atrial septal defect, patent ductus arteriosus, cleft lip and or

palate, trisomy 21 and hypospadias. For three of the birth defects, the shared component model with a

zero-inflated Poisson (ZIP) extension performed better than other simpler models, having a lower

deviance information criteria (DIC). With spina bifida, the ratio of relative risk associated with the

shared component was 2.82 (95% CI: 1.46–5.67). We found that shared component models are

potentially beneficial, but only if there is a reasonably strong spatial correlation in effect for the study

and referent outcomes.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been considerable interest in the
development and application of spatial models to analyse areal-
level data. Most of these applications have been in the field of
disease mapping. Bayesian methods, in particular, have been used
to calculate smoothed relative risks of a particular disease at some
areal level. While much attention has been given to developing
temporal extensions to spatial models and methods for simulta-
neously analysing multiple outcomes, very little has been done to
address the issue of analysing sparse datasets, where there could
be an abundance of zero counts or large number of areas with
extremely low expected counts of the disease.

The conditional autoregressive (CAR) model provides estimates
of disease risk that borrow strength from neighbouring areas. One
advantage of this approach is to provide more precise estimates of
disease risk in areas with a small population, thus helping to

overcome the problem of larger uncertainty associated with a
smaller disease count. However, the performance of the model is
questionable when neighbouring areas themselves are sparsely
populated, as there is little information to borrow. This is
particularly true of studies involving rare disease outcomes.

In epidemiological research, several outcomes can share the same
risk factor (e.g. lung cancer, chronic obstructive pulmonary disease
(COPD) with smoking) (Population Health Division, 2001). We
hypothesised that Bayesian modelling which examined outcomes
with shared risk factors simultaneously, may be a useful means of
overcoming the problems of small area estimation of sparse counts.
We also hypothesised that modelling two outcomes simultaneously
should improve the estimation of the outcome with the sparse
count, provided that both share a common spatially varying covariate,
which need not be measured. We then tested this hypothesis in
models incorporating birth defects and caesarean section rates. Birth
defects are relatively rare events, but community perceptions of
clusters of defects cause great concern. Therefore, they are a useful
health outcome for evaluating methods for estimating spatially
varying risks.
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Relatively few studies have examined the spatial variation in
risks of specific birth defects, with neural tube defects being most
commonly found to be spatially correlated (Meyer and Siega-Riz,
2002; Tuncbilek et al., 1999; Ericson et al., 1988; Borman and Cryer,
1993; Frey and Hauser, 2003; Rankin et al., 2005), followed by oral
clefts (Saxen, 1975; Poletta et al., 2007). In anophthalmia and
microphthalmia (Dolk et al., 1998) prevalence was found to be
higher in rural versus urban areas, as it was in diaphragmatic hernia
and gastroschisis (Rankin et al., 2005). Proximity of maternal
residence to landfill sites was associated with certain birth defects
such as neural tube defects, hypospadias and epispadias and
abdominal wall defects (Elliott et al., 2001). Other studies have
examined spatial distribution of birth defects in general (Rushton
and Lolonis, 1996; Kuehl and Loffredo, 2006; Rushton et al., 1996).
Caesarean sections are a common procedure and spatial variation in
the distribution of caesarean section rates has also been well
established (Taffel, 1994; Magadi et al., 2001; Baicker et al., 2006;
Clarke and Taffel, 1996). One study found a four-fold variation
between low and high use areas (Baicker et al., 2006).

Maternal age is commonly studied as a risk factor for both
birth defects and caesarean counts, and is a readily available
demographic variable in most birth defect registries. The effect of
maternal age on the occurrence of birth defects is not uniform,
with both very young maternal age and old maternal age
associated with a different range of birth defects. For defects like
Down Syndrome (trisomy 21), several studies (Gaulden, 1992;
Hsieh et al., 1995; Reefhuis et al., 1999) have found a positive
association between advanced maternal age and the risk of having
babies with Down Syndrome. An analysis of two large birth
registries combined together, for instance, showed that that
mothers aged 40 years and above were 4.96 times (95% CI:
3.44–7.16) more likely than those aged below 40 to give birth to a
baby with Down Syndrome, and this relationship was statistically
significant (po0.001) (Reefhuis et al., 1999). Further, maternal
age has been associated with caesarean section in a number of
studies (Padmadas et al., 2000; Taffel, 1994; Seshadri and
Mukherjee, 2005; Sims et al., 2000; Maslow and Sweeny, 2000;
Witter et al., 1995; Parrish et al., 1994; Peipert and Bracken, 1993;
Gordon et al., 1991). We use maternal age here as an example. We
would like to emphasise that our subsequent model is not
restricted to just maternal age, as it accommodates a number of
variables, which can be latent, but varying spatially.

We evaluated the shared component Bayesian modelling
approach by examining both birth defect and caesarean section
counts simultaneously. We hypothesised that by modelling two
related outcomes simultaneously, one should be able to better
estimate the outcome with a sparse count, provided both share a
common spatially varying covariate, which need not be measured.

2. Methods

The shared component model was developed by Knorr-Held
and Best (2001) and was applied for the investigation of oral and
oesophageal cancer mortality data for males in Germany. The
model was initially used to separate the underlying risk surface
for each outcome into a shared and outcome-specific component.
The shared component was to be interpreted as a surrogate for
unobserved covariates that display spatial structure and are
common to both outcomes. The two outcome-specific risk
components and the shared component are assumed to be
independent, each with a spatial prior. The authors found two
large clusters with a large shared component value, and they
postulated that this was consistent with the distribution of risk
factors in the neighbourhood. They also found distinct spatial
patterns for each individual outcome.

We obtained data on birth anomalies in the state of New South
Wales (NSW), Australia for the period 1990–2003 (inclusive) from
the NSW Midwives Data Collection (MDC) and Birth Defects
Register (BDR) databases. These mandatory registers of all births
in the state are completed by clinicians at the time of the birth. In
1998, a 2% sample of the Midwives Data Collection records was
validated against hospital records. The excellent quality of this
database is reflected in high correlations and low missing data for
almost all covariates (Centre for Epidemiology and Research,
2000). Further details on the two registries can be found
elsewhere (Centre for Epidemiology and Research, 2007). Data
from both registers was geocoded to the mother’s usual address
using software developed by NSW Health and the Australian
National University using a previously described process
(Summerhayes et al., 2006).

We calculated standardised expected counts for each of seven
birth defects: spina bifida (SB), ventricular septal defect (VSD),
ostium secundum atrial septal defect (ASD), patent ductus
arteriosus (PDA), cleft lip and or palate (CLP), trisomy 21 (T21)
and hypospadias (HPS). For example, the expected count of
hypospadias in each statistical local area (SLA) was defined as
Ei=(Birthsi/Totalbirths)� Totalhypospadias, where Birthsi refers
to total births in the ith SLA, and Totalbirths and Totalhypospadias
refer to the overall number of births and hypospadias defects in
the NSW study region for that particular time-period. These birth
defects were studied for several reasons. They were the more
common defects reported in Australia, and they covered a
spectrum of body systems. They were also correlated with
caesarean rates at varying strengths, which is important to allow
us to quantify the performance of the shared component model,
described in detail below.

We also calculated caesarean section counts for use in
the shared component model. Analyses were undertaken at the
statistical local area (SLA) level, for which there were 198
SLAs available. The median size of the SLAs in our study was
2069 km2 (interquartile range 181–4103 km2), while the median
annual number of births in each SLA was 193 (interquartile range
66–670). SLA-specific relative risk estimates were calculated as
the ratio of the observed and expected counts for each area.
Caesarean section counts were obtained from the Midwives Data
Collection registry, and we included both emergency and elective
caesarean counts from 1990 to 2003.

Ethical approval was obtained for the use of the NSW
Midwives Data Collection and the NSW Births Defects Registry
data from the NSW Population and Health Services Research
Ethics Committee, and for the study itself from the University of
Sydney Ethics Committee.

We compared the following four models in our analysis: a
simple CAR model, a CAR model with a zero-inflated Poisson (ZIP)
extension to model the excess zeros, a shared component model
and finally a shared component with a ZIP extension.

The simple CAR model consisted of both a spatially structured
prior and spatially unstructured prior, which is sometimes known
as the convolution prior or the Besag, York and Mollie (BYM)
model (Besag et al., 1991). The BYM model allows for
the smoothing of relative risk estimate in each region towards
the mean risk in the neighbouring areas. This provides for a more
precise or reliable estimate of both mean and variance compared
to using the crude rate. Risks are also smoothed towards the
global mean to account for overdispersion.

The basic shared component model was formulated as follows:

O1i � PoiðE1i y
d
i f1iÞ

O2i � PoiðE2i y
1=d
i f2iÞ
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