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a b s t r a c t

We discuss a formal mathematical framework for certain coupling constructions via mi-
norisation conditions, which are often used to prove bounds on convergence to stationarity
of stochastic processes and Markov chain Monte Carlo algorithms.
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1. Introduction

Bounds on the convergence ofMarkov chains and other stochastic processes to stationary distributions has become a very
widely studied topic in recent years, motivated largely by applications to Markov chain Monte Carlo (MCMC) algorithms;
see, for example, Gelfand and Smith (1990), Tierney (1994), Geyer (1992), Gilks et al. (1996), and Brooks et al. (2011). One
common method of obtaining such bounds is through coupling constructions; see, for example, Thorisson (2000), Rosenthal
(2002), and Roberts and Rosenthal (2004). Here, a second copy of a similar or identical process is constructed, jointly with
the original process, and the probability of the two chains becoming (or remaining) equal is then examined and used.

Such coupling constructions are often presented in a somewhat informal and intuitive style, of the form ‘‘First construct
one random variable as follows, then find a joint distribution for these two other random variables conditional on the first
one, then conditionally construct a fourth random variable like this’’, etc. We believe this to be acceptable, and to lead to
rigorously valid coupling constructions. However,we recently becameaware that at least onemathematicallyminded reader
is not comfortable with such informal descriptions. Thus, the purpose of this note is to provide a more formal mathematical
version of commonmethods of constructing couplings of pairs of stochastic processes.We emphasise that none of the results
presented here are particularly novel – they are simple consequences of the Kolmogorov extension theorem, the coupling
inequality, and maximal couplings – but we hope that they will help clarify the application of coupling constructions to
MCMC algorithms.

Coupling constructions are often used to bound the probability of two Markov chains with identical transition kernels
becoming equal, thus bounding the total variation distance between them (see, for example, Thorisson, 2000, Rosenthal,
1995, andRosenthal, 2002). Someother approaches instead bound the probability of twoprocesseswith different probability
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laws staying equal for all times up to time N . Both cases often involve conditional-type coupling constructions which are
usually stated informally, but which can be stated formally if desired. Below, for concreteness, we concentrate on the second
case, since the recent questions about coupling constructions originated there. However, similar methods can be used to
‘‘formalise’’ the coupling constructions in the first case too—and indeed in any situation in which couplings are constructed
informally, one random variable at a time, in terms of various conditional distributions.

2. Statement of main result

Let {Xn}
∞

n=0 and {X ′
n}

∞

n=0 be two different stochastic processes, defined possibly on different probability spaces, but taking
values in the same Polish measurable state space (X, B) (e.g. on Rd with the Borel subsets). Let Fn = (X0, X1, . . . , Xn)
and F ′

n = (X ′

0, X
′

1, . . . , X
′
n) be the two processes’ histories up to time n. For n ≥ 1, A ∈ B, and a state history vector

s(n−1)
= (s0, s1, . . . , sn−1) ⊆ Xn, let Qn(A; s(n−1)) = P[Xn ∈ A | Fn−1 = s(n−1)

] and Q ′
n(A; s(n−1)) = P[X ′

n ∈ A | F ′

n−1 = s(n−1)
]

be the regular conditional probability distributions. As a special case, when n = 0, let F−1, F ′

−1, and s(−1) each be the empty
set, so that Q0(A; s(−1)) = P[X0 ∈ A | ∅ = ∅] = P[X0 ∈ A] and Q ′

0(A; s(−1)) = P[X ′

0 ∈ A].
In terms of these definitions, a formal statement about sequential coupling constructions which attempt to keep the two

processes equal is as follows.

Theorem 1. Let N be a non-negative integer. Suppose that, for each 0 ≤ n ≤ N, there is an ≥ 0 such that, for each state history
vector s(n−1)

= (s0, s1, . . . , sn−1) ⊆ Xn, either
(i) supA∈B |Qn(A; s(n−1)) − Q ′

n(A; s(n−1))| ≤ an; or
(ii) there are random variablesW andW ′, defined jointly on some probability measure space, each taking values inX, which are

measurable functions of s(n−1) (i.e., such that, if W = W (s(n−1)) and W ′
= W ′(s(n−1)), then, for each A ∈ B , the subsets

{s(n−1)
: W (s(n−1)) ∈ A} and {s(n−1)

: W ′(s(n−1)) ∈ A} are measurable subsets of Xn), such that P[W ∈ A] = Qn(A; s(n−1))
and P[W ′

∈ A] = Q ′
n(A; s(n−1)) for all A ∈ B , and P[W = W ′

] ≥ 1 − an; or
(iii) there is a probability measure ν(·) on (X, B) which is a measurable function of s(n−1) (i.e., such that, if ν(·) = νs(n−1)(·),

then, for each A ∈ B , the mapping s(n−1)
→ νs(n−1)(A) is a measurable function of s(n−1)

∈ Xn), such that Qn(A; s(n−1)) ≥

(1 − an) ν(A) and Q ′
n(A; s(n−1)) ≥ (1 − an) ν(A) for all A ∈ B .

Then there exist random variables {X̃n, X̃ ′
n}

N
n=0 defined jointly on some probability measure space, such that L(X̃0, . . . , X̃N) =

L(X0, . . . , XN), L(X̃ ′

0, . . . , X̃
′

N) = L(X ′

0, . . . , X
′

N), and, furthermore,

P(X̃i = X̃ ′

i for 0 ≤ i ≤ N) ≥ 1 − a0 − a1 − a2 − · · · − aN . (∗)

3. Background tools

In this section, we collect a few standard results that will be used to prove the above theorem.

Proposition 2. Let ρ and σ be two probability measures on (X, B), and let ϵ ≥ 0. Then the following are equivalent.
(i) supA∈B |ρ(A) − σ(A)| ≤ ϵ.
(ii) There are jointly defined random variables Y and Z taking values on (X, B), such that P(Y ∈ A) = ρ(A) and P(Z ∈ A) =

σ(A) for all A ∈ B , and P[Y = Z] ≥ 1 − ϵ.
(iii) There is a probability measure ν(·) on (X, B) such that ρ(A) ≥ (1 − ϵ) ν(A) and σ(A) ≥ (1 − ϵ) ν(A) for all A ∈ B .

Proof. That (ii) implies (i) is the standard coupling inequality; see, for example, Thorisson (2000), or Eq. (13) of Roberts and
Rosenthal (2004).

That (i) implies (ii) is a well-known property of couplings, corresponding to the existence of maximal couplings (see,
for example, Griffeath, 1975 or Proposition 3(g) of Roberts and Rosenthal, 2004). Indeed, let η(·) = ρ(·) + σ(·) be a joint
dominating measure, with corresponding Radon–Nikodym derivatives g =

dρ
dη and h =

dσ
dη , and let m = min(g, h). Then,

let a =


X
mdη, b =


X
(g − m) dη, and c =


X
(h − m) dη. The statement is trivial if any of a, b, c are zero, so assume

that they are all positive. Then jointly construct independent random variables R,U, V , I such that R has density m/a, U
has density (g − m)/b, V has density (h − m)/c , P[I = 1] = a, and P[I = 0] = 1 − a. Finally, let Y = Z = R if I = 1,
and let Y = U and Z = V if I = 0. Then Y ∼ ρ(·) and Z ∼ σ(·), and U and V have disjoint support, so P[U = V ] = 0.
Hence, P[Y = Z] = P[I = 1] = a. But it is easily seen that a = 1 − supA∈B |ρ(A) − σ(A)| (see, e.g., Roberts and Rosenthal,
2004, Proposition 3(f)), which gives the result.

That (iii) implies (i) follows by setting α(A) = ϵ−1
[ρ(A) − (1 − ϵ) ν(A)] and β(A) = ϵ−1

[σ(A) − (1 − ϵ) ν(A)], so that
α(·) and β(·) are probability measures on (X, B), and ρ(·) = ϵ α(·)+ (1− ϵ) ν(·) and σ(·) = ϵ β(·)+ (1− ϵ) ν(·), whence

|ρ(A) − σ(A)| = |ϵ α(A) + (1 − ϵ) ν(A) − ϵ β(A) − (1 − ϵ) ν(A)| = ϵ |α(A) − β(A)| ≤ ϵ.

Finally, that (ii) implies (iii) follows by setting ν(A) =
P[Y∈A, Y=Z]

P[Y=Z]
. �
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