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a b s t r a c t

Standard logistic regression assumes that the outcome is measured perfectly. In practice,
this is often not the case, which could lead to biased estimates if not accounted for.

This study presents Bayesian logistic regression with adjustment for misclassification of
the outcome applied to data with spatial correlation. The models assessed include a fixed
effects model, an independent random effects model, and models with spatially correlated
random effects modelled using conditional autoregressive prior distributions (ICAR and
ICAR(q)). Performance of these models was evaluated in a simulation study.

Parameters were estimated by Markov Chain Monte Carlo methods, using slice sampling
to improve convergence.

The results demonstrated that adjustment for misclassification must be included to pro-
duce unbiased regression estimates. With strong correlation the ICAR model performed
best. With weak or moderate correlation the ICAR(q) performed best. With unknown spa-
tial correlation the recommended model would be the ICAR(q), assuming convergence can
be obtained.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Logistic regression is often used in epidemiology for
estimating the effect of observed covariates on a binary
outcome. The standard model does, however, assume that
the outcome is measured perfectly, i.e. sensitivity and
specificity are both 1. In practice, this is often not the case.
Many diagnostic tests for infectious diseases, for example,
are not perfect which can result in a misclassified outcome.
This could lead to biased estimates (Copeland et al., 1977)
if not accounted for in the model.

Magder and Hughes (1997) introduced the use of an EM
algorithm to incorporate information on misclassification
in fixed effects logistic regression in a frequentist setting.
In their approach, sensitivity and specificity were assumed

fixed at predetermined values. This assumption was re-
laxed by e.g. Lyles et al. (2011) using validation-data based
adjustment for misclassification. McInturff et al. (2004)
presented a method to account for misclassification in a
Bayesian setting. The Bayesian approach offers the possi-
bility of including uncertainty in sensitivity and specificity
through prior distributions. Here we will focus solely on a
Bayesian approach.

If study subjects are clustered, e.g. animals are located
in a herd or repeated measures are made on a subject,
random effects can be included in the model to account
for correlation within these clusters. Paulino et al. (2005)
considered Bayesian logistic regression with correlated
misclassified data and included independent random ef-
fects in the model. Random effects can also be included
to account for spatial correlation in data. These random
effects will be correlated according to a given spatial
structure and will in this paper, as in many other studies,
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be modelled by a conditional autoregressive (CAR) prior
distribution. A simple CAR model was proposed by Besag
et al. (1991) and expanded by e.g. Cressie (1993) and Ler-
oux et al. (1999). However, accounting for misclassification
in models including these spatially structured random ef-
fects has, to our knowledge, not been studied.

In this paper we present a Bayesian logistic regression
model with adjustment for misclassification of the out-
come and including spatially structured random effects
modelled by CAR priors. The objectives were to (1) esti-
mate parameters using Markov Chain Monte Carlo meth-
ods which posed some challenges in terms of
convergence, (2) evaluate the effect of misclassification
and compare the performance of two CAR priors as well
as two models without spatial structure when applied to
data with misclassification and spatial correlation among
observations, and (3) study model fit, in particular with re-
gards to inclusion of spatial structure. The objectives were
addressed in a simulation study.

2. Statistical model

Consider a population of subjects clustered in known
geographic locations, e.g. inhabitants in municipalities or
animals within herds. All subjects are classified in two
groups according to the outcome of a test for a given
condition. Let Yij denote the test status (positive test = 1,
negative test = 0) of subject: j, location: i; j ¼ 1; . . . ;ni;

i ¼ 1; . . . ;n. Then Yij � Bernoulli ðpijÞ, where pij ¼ Pr
(positive test), j ¼ 1; . . . ;ni; i ¼ 1; . . . ;n. A traditional lo-
gistic regression model with random effect
V t ¼ ðV1; . . . ;VnÞ is given by

logitðpijÞ ¼ aþ bxþ Vi; ð1Þ

where a is the intercept, b is a vector of regression param-
eters, and xt ¼ ðx1; . . . ; xmÞ is a set of covariates.

Given sensitivity se and specificity sp of the test, the
probability of a positive test can be written as

pij ¼ se� pij þ ð1� spÞ � ð1� pijÞ; ð2Þ

where pij ¼ Pr (condition truly present) (Rogan and
Gladen, 1978). A logistic regression model adjusted for
misclassification is then given by

logitðpijÞ ¼ aþ bxþ Ui ð3Þ

The random effect U t ¼ ðU1; . . . ;UnÞ is included to account
for residual spatial correlation. The spatial correlation is
modelled by an n� n matrix W describing the neighbour-
hood relations. Neighbours are correlated whereas non-
neighbours are conditionally independent given all other
random effects. In this study, neighbourhood relations
are defined in terms of distance: locations within a prede-
fined distance D of each other are considered neighbours
and correlation is related to their inverse distance. Hence,
the ðr; sÞ element of W is given by

W rs ¼
1

drs
if 0 < drs 6 D

0 otherwise

(

where drs is the distance between location r and s.

The random effect U is modelled by a CAR model for
UijU�i; i ¼ 1; . . . ;n, where U�i denotes all the elements in
U except Ui. A simple example of such a model is the
intrinsic conditional autoregressive (ICAR) model proposed
by Besag et al. (1991) and given by

UijU�i � N
Xn

k¼1

W ik

Wiþ
Uk;

r2

Wiþ

 !
; i ¼ 1; . . . ;n; ð4Þ

where Wiþ ¼
Pn

k¼1Wik. Hence, the conditional mean of the
random effect Ui is a weighted average of the neighbouring
random effects and the precision depends on the amount
of information supplied by neighbours (many neighbours
located nearby means a large precision). The joint distribu-
tion corresponding to (4) is improper since it specifies only
differences in Ui’s. This can, however, be fixed by the
constraint

Pn
i¼1Ui ¼ 0. Another way to assure propriety is

to include a correlation parameter q which leads to the
ICAR(q) model

UijU�i � N q
Xn

k¼1

W ik

Wiþ
Uk;

r2

Wiþ

 !
; i ¼ 1; . . . ;n; ð5Þ

suggested by e.g. Sun et al. (1999). The joint distribution
corresponding to (5) is Nnð0;RÞ, where

R ¼ r2 fW � qW
� ��1

ð6Þ

with fW ¼ diagðW1þ; . . . ;WnþÞ. To ensure the covariance
matrix R to be positive definite, the correlation parameter
q is bounded by -1 and 1. Hence, the ICAR model (4) is just
the special case assuming maximum correlation. A point of
criticism of the ICAR(q) model is that even with no spatial
correlation present (q ¼ 0) the variance still depends on
the neighbours. With no residual spatial correlation be-
tween clusters the random effects should, however, be
modelled as independent and identically Normal distrib-
uted, i.e. U � Nnð0;r2IÞ – in the following termed the
random effects model. The logistic regression model could
be further simplified by ignoring any clusters and omitting
the random effect U in (1) and (3) – in the following
termed the fixed effects model.

3. Simulation study

3.1. Motivating example: paratuberculosis

Paratuberculosis is a chronic infection in cattle caused
by Mycobacterium avium subsp. paratuberculosis (MAP)
(Harris and Barletta, 2001). A voluntary control pro-
gramme on paratuberculosis is offered to Danish dairy
farmers. On January 1, 2009, 28% of the herds participated
in the programme (Bihrmann et al., 2012). Geographic
location of these herds are given as UTM coordinates rep-
resenting the largest building on the premises. Participat-
ing herds are tested for MAP four times a year using a
milk antibody ELISA (ID-Screen�, ID-Vet, Montpellier,
France). Tests are performed and recorded on individual
cows. One date of testing within each herd tested between
October 2008 and June 2009 was included in this study. A
total of 194,465 cows in 1503 herds were tested. For more
details on these data, please refer to Bihrmann et al. (2012).
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