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a b s t r a c t

In this paper we propose a method called half spectral composite
likelihood for the estimation of spatial–temporal covariance
functions which involves a spectral approach in time and a
covariance function in space. It facilitates the analysis of spectral
density of all possible pairwise contrasts at different spatial
sites. The proposed approach requires no matrix inversions and
the estimators are shown to be consistent and asymptotically
normal under increasing domain asymptotic in a fashion similar
to Bevilacqua et al. (2012). A simulation study is carried out to
assess the performance of the proposed estimation method from
statistical and computational viewpoint with respect to difference
composite likelihood. The half spectral composite likelihood
estimates show better performance with respect to the difference
composite likelihood. A real example is given using the Irish wind
speed data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spatial–temporal (ST) data are frequently encountered in many scientific disciplines, especially
in environmental, meteorological or geophysical contexts. One major challenge in modeling ST data
is the high dimensionality of such data. This is crucial because many statistical inferences such
as maximum likelihood (ML) estimation and best linear unbiased prediction e.g. kriging (Cressie,

E-mail address: a.m.mosammam@znu.ac.ir.

http://dx.doi.org/10.1016/j.spasta.2016.01.003
2211-6753/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spasta.2016.01.003
http://www.elsevier.com/locate/spasta
http://www.elsevier.com/locate/spasta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spasta.2016.01.003&domain=pdf
mailto:a.m.mosammam@znu.ac.ir
http://dx.doi.org/10.1016/j.spasta.2016.01.003


20 A.M. Mosammam / Spatial Statistics 16 (2016) 19–34

1993), with massive datasets, involve large dimensional covariance matrices which must be inverted.
Therefore, approximating the likelihood functions is a fundamental key to tackle such problems.

There have been several computational efficient approaches to overcome this large dimensional
matrix problem, such as assuming cyclic stationary process (Brillinger, 2001), assuming separability
on ST covariance functions (Genton, 2007), tapering the covariance matrix (Kaufman et al., 2008),
modeling the realizations by a latent processwith reduced dimension (Cressie and Johannesson, 2008)
and approximating the random field (RF) with a Gaussian Markov RF or basis expansions (Lindgren
et al., 2011).

One way to approximate the likelihood without involving the calculation of determinants and
inverses is based onWhittle (1954) approximation to the Gaussian negative log-likelihood, which can
only be used for datasets observed on a regular lattice. For irregularly spaced Gaussian data, Fuentes
(2007) developed a version of Whittle’s approximation to the Gaussian negative log-likelihood
by introducing a lattice process and truncating the spectral representation of the lattice process.
Another spectral method presented by Matsuda and Yajima (2009) extends the definition of a classic
periodogram for time series to the irregularly spaced process.

Composite likelihood (CL) as proposed in Lindsay (1988) is also convenient in the setting where
the full likelihood is not feasible or is difficult to construct. The idea of CL method is primarily to
break a computationally infeasible likelihood into several computationally feasible ones. To construct
a CL, one starts with a set of conditional or marginal events for which one can write log-likelihoods
easily. The log-composite likelihood is then can be written by adding together the log likelihood of
thesemarginal, bivariate or conditional eventswhile the components are not necessarily independent.
Varin (2008) provided a survey of CL applications. Example of CL applications includes Liang and
Zeger (1986) for longitudinal data, Lele and Taper (2002) for multivariate normal, and Kuk (2007)
for clustered data.

Earlier, Besag (1975) considered a similar approach to CL for spatial data. Heagerty and Lele (1998)
and Curriero and Lele (1999) applied CL for binary spatial data. Lele (1997) introduced difference
CL methods for the estimation of purely spatial semi-variogram parameters. Bevilacqua et al. (2012)
modified this approach to a ST framework and proved that the associated estimator is consistent and
asymptotically normal under increasing domain asymptotic. In this paper, our objective is to consider
the estimation of the parameters of ST covariance functions using a half-spectral composite likelihood
(HSCL) approach which involves a spectral approach in time but a covariance approach in space. The
idea of the proposed approach is to facilitate the analysis of spectral density of contrast components
at different spatial sites. The attraction of this methods is that the spectral density function is usually
very easy and fast to evaluate by fast Fourier transformations. As we will show later in this paper it
is the only part of the likelihood function which changes when a new estimate of θ is produced in an
iterative optimization procedure, and therefore the calculations involved in such a procedure can be
carried out quite rapidly. Let Z(s, t) be a real-valued stationary ST process defined on Rd

× R, where
s ∈ Rd represents the spatial site in d dimension, and t ∈ R represents the time. Assume that the
second moments for the RF exist and are finite. Write the ST process in the general form

Z(s, t) =


ei(s

′ω+tτ)dW (ω, τ ) =


eitτ J(s, τ )dτ , (s, t) ∈ Rd

× R

where J(s, τ ) =

ω
eis

′ωdW (ω, τ ), (ω, τ ) ∈ Rd
× R and W is a generalized random function with

complex symmetry. Note that dW (ω, τ ) = dW ∗(−ω, −τ) ensures that Z(s, t) is real-valued. Suppose
that C is a continuous and symmetric function on Rd

× R. Then C is a covariance function if and only
if it is of the form

C(h, u) =


ei(h

′ω+uτ)dF(ω, τ ) =


eiuτH(h, τ )dτ , (h, u) ∈ Rd

× R (1)

where H(h, τ ) =

ω
eih

′ωdF(ω, τ ) and F is a finite, non-negative and symmetric spectral measure
on Rd

× R. Note that E|dW (ω, τ )|2 = dF(ω, τ ). We shall call H a ‘‘half spectral function’’ since it
depends on the spatial lagh and the temporal frequency τ . IfC(h, u) is integrable, the spectralmeasure
is absolutely continuous with a spectral density function f (ω, τ ). If the spectral density exists, (1)
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