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a b s t r a c t

In this work we perform a statistical downscaling by applying a CDF transformation function to local-
level daily precipitation extremes (from NCDC station data) and corresponding NARCCAP regional cli-
mate model (RCM) output to derive local-scale projections. These high-resolution projections are es-
sential in assessing the impacts of projected climate change. The downscaling method is performed on
58 locations throughout New England, and from the projected distribution of extreme precipitation
local-level 25-year return levels are calculated. To obtain uncertainty estimates for return levels, three
procedures are employed: a parametric bootstrapping with mean corrected confidence intervals, a non-
parametric bootstrapping with BCa (bias corrected and acceleration) intervals, and a Bayesian model. In
all cases, results are presented via distributions of differences in return levels between predicted and
historical periods. Results from the three procedures show very few New England locations with sig-
nificant increases in 25-year return levels from the historical to projected periods. This may indicate that
projected trends in New England precipitation tend to be statistically less significant than suggested by
many studies. For all three procedures, downscaled results are highly dependent on RCM and GCMmodel
choice.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There is great societal interest in assessing the impacts of
projected climate change, and more specifically, there is an intense
interest in the impact of change in variability and extreme events
that could accompany global climate change predictions (Tebaldi
et al., 2006). Increases in these extremes have already been ob-
served as precipitation events, heat waves, and drought are oc-
curring with greater intensity and frequency over the past few
decades (U.S. Climate Change Science Program (USCCSP), 2008).
Other analyses have provided additional evidence that precipita-
tion extremes are becoming more extreme and will continue to do
so in the future (e.g. Zwiers and Kharin, 1998; Groisman et al.,
1999; Meehl et al., 2000; Tank and Konnen, 2003; Karl and Knight,
1998; Kharin and Zwiers, 2005). In their survey of recent projec-
tions of climate extremes provided by global circulation models
(GCMs), Tebaldi et al. (2006) concluded that models agree with
observations over the historical period and that there is a trend
towards a world characterized by intensified precipitation, with a

greater frequency of heavy-precipitation and extreme events.
Precipitation extremes are a primary concern as these events

are typically more impactful than precipitation events alone and
are responsible for a disproportionately large part of climate-re-
lated damages (Kunkel et al., 1999; Easterling et al., 2000; Meehl
et al., 2000). Natural systems may also be affected by changes in
precipitation extremes, as these events have been shown to cause
shifts in ecosystem distributions, to trigger extinctions, and to alter
species morphology and behavior (Parmesan et al., 2000). Fur-
thermore, extreme rainfall often translates into extreme flooding
and consequently great material and economic losses, erosion and
damage to crops, collapse of lifeline infrastructure, the breakdown
of public health services (Douglas and Fairbank, 2011), fatalities
(Kunkel et al., 1999), and structural damage to dams, bridges, and
coastal roads.

In this work, we outline a procedure to examine potential
change in precipitation extremes in New England. In the following
section (Section 2), we discuss methods of statistical/probabilistic
downscaling as well as some elements of extreme value theory
germane to our analysis. In Section 3, we describe our data: pre-
cipitation observations for locations throughout New England,
historical climate model output, and projected series for future
precipitation. Section 4 outlines our downscaling approach and
discusses all details of our methods. Section 5 presents our
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downscaling results. Lastly, in Section 6, a discussion and conclu-
sion is presented.

2. Downscaling

Atmosphere-ocean general circulation models, or AOGCMs, are
coupled atmosphere and ocean models that simulation weather at
a global scale. AOGCMs are the main component of global climate
models (GCMs) which are the primary tools used to quantify and
assess climate change impacts (Wilby and Harris, 2006). However,
because global weather simulation is so computationally ex-
pensive, these models provide predictions at an extremely coarse
scale (250 KM by 250 KM, in most cases). The issue is that en-
vironmental impact models are sensitive to local climate char-
acteristics, and the drivers of local climate variation are not cap-
tured at the coarse scales of GCMs (Maurer and Hidalgo, 2008).
That is, GCMs do not provide an accurate description of local cli-
mate. To overcome this discrepancy, methods of ‘downscaling’ are
applied to produce local-scale climate predictions based on cor-
responding GCM scenarios.

Downscaling appears in two forms: Dynamical and statistical
downscaling (or empirical statistical downscaling, ESD). Dynami-
cal downscaling is a computationally-intensive technique which
makes use of the lateral boundary conditions combined with re-
gional-scale forcings such as land-sea contrast, vegetation cover,
etc., to produce regional climate models (RCMs) from a GCM. RCM
outputs are typically produced over regular geographic grids with
scales in the tens of kilometers.

Statistical downscaling (SD), on the other hand, is a computa-
tionally less demanding alternative that may be applied to achieve
a variety of results. Essentially, statistical downscaling is a two-
step process consisting of 1) the development of statistical re-
lationships between local climate variables and large-scale pre-
dictors, and 2) the application of such relationships to the output
of large-scale output to simulate local climate characteristics in the
future (Hoar and Nychka, 2008). Statistical downscaling is a rea-
listic approach to develop a specific, local-level climate prediction.
Typically, SD methods are applied to GCM projections, but may
also be applied to RCM output as these results may not be re-
presentative for the local climate (Skaugen et al., 2002; Engen-
Skaugen, 2004). Furthermore, RCM output may simply have in-
adequate spatial resolution for some impact studies, and hence
additional statistical downscaling must be applied to the dyna-
mical model results (Benestad et al., 2007).

2.1. Probabilistic downscaling

This analysis focuses on a method of ‘probabilistic downscaling’
to project a single variable, extreme precipitation, into the future.
While traditional ESD models the link between large- and local-
scale variables, probabilistic downscaling is a type of statistical
downscaling that models the relationship between large- and lo-
cal-scale statistical entities. In this case, the statistical entities are
the corresponding cumulative distribution functions (CDFs) of the
large- and local-scale precipitation extremes. In this way, prob-
abilistic downscaling techniques do not retain the chronology, or
exact ordering, of events. However, accurate descriptions of future
climate distributions are themselves sufficient predictions as we
do not aim to predict weather, but rather the distribution of a
weather variable (precipitation extremes).

When working exclusively with cumulative distribution func-
tions, the simplest form of downscaling is what is referred to as
‘quantile mapping’ or ‘quantile matching’. This non-parametric
technique downscales a large-scale value x by selecting a local-
scale value y based on the following:

( )( )= ( ) = ( )−F y F x y F F xwithY X Y X
1

where F is a CDF of a climate random variable. Once a mapping has
been defined, it is then applied to large-scale dataset to create a
local-scale prediction. The method does not take into account the
information of the distribution of the future modeled dataset
(Michelangeli et al., 2009). Furthermore, the method of quantile
mapping cannot provide local-scale quantiles outside the range of
the historical observations (Michelangeli et al., 2009). Proposed by
Wood et al. (2004), the technique was applied to downscale
monthly precipitation and temperature output from a GCM, and
became known as bias-correction and spatial downscaling (BCSD).

To overcome the shortcomings of the quantile matching
methodology, Michelangeli et al. (2009) proposed an extension to
this mapping called the CDF-t. The CDF-t is similar to quantile
mapping as it compares local- and large-scale distributions, but it
accounts for changes in the large-scale CDF between historical and
future periods. Let X denote a variable from climate model output
and let XC denote the series of the variable over the current, or
calibration, period. Then, XP denotes the variable projected into
the future, the time series from runs of the climate model in the
future. Similarly, let YC and YP denote the current and future series
for the local-level station. We note that while YC is observed, YP will
need to be predicted or downscaled. Finally, a transformation, (∙)T ,
is assumed to exist between the large- and local-scale variable
such that (∙) [ ]→[ ]T : 0,1 0,1 . We then have the relationship:

( )( ) ( )( )= ( ) = ( ) ( )
−F x T F x F F F x 1Y X Y X X

1
P P C C P

where FYP and FXPare the respective empirical CDFs for the local-
and large-scale prediction, and FYC and FXC are the respective CDFs
of observed (historical) local-level data and observed large-scale,
or regional data. For further details see Michelangeli et al. (2009).
The improvement over quantile mapping is that the future, local-
scale distribution is a function of both historical observations and
large-scale information that may be distributed differently be-
tween calibration and projection periods.

However, for precipitation data, we are more concerned with
the extreme events. In these cases, where the tails, which corre-
spond to the extremes or high quantiles, are of primary interest,
the non-parametric CDF-t is not ideal. Generally speaking, these
rare, extreme values result in empirical CDFs for precipitation that
are heavy-tailed. With few data at the extreme ends of the dis-
tribution, non-parametric quantile estimates in these tails have
large variance and they may be strongly influenced by a single
extreme event. Also, observations of historical changes, as well as
future projections, confirm that changes in the distributional tails
of precipitation (extremes) may not occur in proportion to changes
in the mean and may not be symmetric in nature (Kharin and
Zwiers, 2005; Robeson, 2004; Tank and Konnen, 2003; Easterling
et al., 2000).

In light of this, Kallache et al. (2011) proposed the XCDF-t
technique to downscale the distribution of extremes exclusively.
The technique is analogous to the CDF-t technique of Michelangeli
et al. (2009) in that is makes use of the same transformation
function form (see Eq. (1)) to link large- and local-scale distribu-
tions of climate variables. Unlike the CDF-t method, however, the
XCDF-t links estimated parametric distributions of large- and lo-
cal-scale extremes only. To do this, ‘exceedances over a threshold’
based on extreme value theory (EVT) are used to fit appropriate
distributions to extremes based on limiting properties of max-
stable processes (See, for example, Coles, 2001). The framework of
EVT allows for more precise estimation of the extreme portions of
distributions.

For the XCDF-t, FXP , FYC , and FXC are cumulative Generalized
Pareto distribution (GPD) for the extremes of the modeled
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