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ARTICLE INFO ABSTRACT

Article history: Magnetohydrodynamics (MHD) studies consider the dynamics of electrically conducting
Received 22 August 2013 fluids. MHD are described by a set of equations, which are a combination of the Navier-
Received in revised form 16 July 2014 Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. In most
Q\C’;?g tbel(: incl)icrfgt:;rxiom terrestrial applications, MHD flows occur at low magnetic Reynolds numbers. In this study,

we apply the finite element method to time-dependent MHD flows with Backward-Euler
discretization at low magnetic Reynolds number. We present a comprehensive error anal-
ysis for fully discrete approximation. Finally, the effectiveness of the method is illustrated
by several numerical examples.
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1. Introduction

The significance of magnetohydrodynamics (MHD) has increased in recent years with respect to scientific and engineer-
ing problems, such as liquid—-metal cooling of nuclear reactors [1,2], electromagnetic casting of metals [3], controlling ther-
monuclear fusion and plasma confinement [4,5], climate change forecasting, and sea water propulsion [6,7]. Theoretical
analyzes and mathematical modeling of MHD equations can be found in [8,9]. For steady-state MHD problems, the existence,
uniqueness, and finite element (FE) approximation have been described in previous studies, such as [10-12]. Variational
methods and numerical approximations for solving stationary MHD equations with different boundary conditions were also
studied in [13-15]. For time-dependent MHD, Schmidt [16] proposed a formulation of evolutionary MHD and established the
existence of global-in-time weak solutions using the Galerkin method. Time discretization schemes for MHD problems were
studied by Yuksel and Ingram [17], where they provided proofs of stability and error analyzes for semi-discrete approxima-
tions (FE in space) and fully-discrete approximation (FE in space, Crank-Nicolson time-stepping). Trenchea [18] proved the
unconditional stability of a partitioned method for the evolutionary full MHD equations with a high magnetic Reynolds num-
ber. Layton et al. [19] introduced two partitioned methods to solve evolutionary MHD equations and provided a complete
error analysis. An analysis of the semidiscrete approximation of the problem was presented in [17]. In the present study,
we provide a stability and convergence analysis of an FE discretization for a time-dependent MHD flow at a low magnetic
Reynolds number and under a quasi-static approximation with Backward-Euler time discretization.

Let Q c RY (d = 2 or 3) be an open, regular domain. The dimensionless quasi-static MHD is modeled by the following sys-
tem (e.g., [17]). Given time T > 0, body force f, interaction parameter N > 0, Hartmann number M > 0, and by letting
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Qr:=[0,T] x Q, find the velocity u:Qr — RY, pressure p:Qr — R, electric current density j: Qr — RY, magnetic field
B: Q; — RY and electric potential ¢ : Qr — R that satisfy

N'u+u-Vu)y=f+M2Au—-Vp+jxB, V-u=0
—-V¢+uxB=j, V-j=0, (1)
VxB=Ryj, V-B=0,

subject to boundary and initial conditions
u(x,t) =0, V(x,t)€oQx[0,T],
o(x,t) =0, V(xt)eoQx]0,T], (2)
u(x,0) = up(x), VvxeQ.

Here, Ry, = UL/5 > 0,U is the characteristic speed, L is the length of the problem, # > 0 is the magnetic diffusivity,

Up € Hé(Q)d, and V -up = 0.jand V x Bin (1) and (3a) decouple when R, < 1. If we suppose that B is an applied (and known)
magnetic field, (1) reduces to the following simplified MHD (SMHD) system (e.g., [17]). Find u, p, ¢ that satisfy

N u+u-Vu)=f+M2Au—Vp+Bx V¢ + (uxB) xB,
V-u=0, 3)
—Ap+V - (uxB)=0,

subject to (2).

The remainder of this paper is organized as follows. In Section 2, we present notations and a weak formulation of (3),
which are required for the stability and convergence analysis. In Section 3, we prove the stability analysis for fully-discrete
approximation with the Backward-Euler (BE) time stepping method. We prove that the method is unconditionally stable.
Moreover, for h, At — 0, the order of convergence for the method is O(At + h"), where r is the order of the FE approximation.
Therefore, the comprehensive error analysis and convergence of the fully-discrete approximation are proposed in Section 4.
In Section 5, several examples are presented to illustrate the convergence and the effectiveness of the method.

2. Problem formulation
We denote the L*-norm and inner product by (-,-) and || - |, respectively. The W}(Q)-norm and the W(Q)-semi-norm are

denoted by || - ||, := Il - Hwk (o and | \Wlkj «) respectively. For p = 2, we write H*(Q) := W%(Q), and we denote II-lleand | |, as
the corresponding norm and semi-norm. We denote the pressure, velocity, and electric potential spaces by

Q: = { e}(Q /q 0}
X: {veHl(Q) :y\m:o},
S:={v e H'@): l,n =0}

respectively. X = H"'(Q) is the closure of L*(Q) in ||.||_;, where
(f,v)
=su )
Wl =505

Let LY(0, T; W’;(Q)) denote the space
:(0,T) — W}(Q) : v is measurable }

and [ ||v(t dt < oo

L7(0,T; Wy(Q)) = {

HWk

endowed with the norm

1/q
1V]]0 oTwh@) = H” [ ki .
( Wi(

We write Lq(wg) =1900,T; Wg(Q)) and cm(wg) = C"™([0, T]; W5(Q)). For v(x,t) and 1 < p < oo, we introduce

[Vl : =esssup [[o(t, )|y,
0<t<T

oo,k

[lpr == (/OT ||v(r,-)w,§dr>

Let V be the divergence-free subspace of X, i.e.,

1/p
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