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a b s t r a c t

Magnetohydrodynamics (MHD) studies consider the dynamics of electrically conducting
fluids. MHD are described by a set of equations, which are a combination of the Navier–
Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. In most
terrestrial applications, MHD flows occur at low magnetic Reynolds numbers. In this study,
we apply the finite element method to time-dependent MHD flows with Backward-Euler
discretization at low magnetic Reynolds number. We present a comprehensive error anal-
ysis for fully discrete approximation. Finally, the effectiveness of the method is illustrated
by several numerical examples.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The significance of magnetohydrodynamics (MHD) has increased in recent years with respect to scientific and engineer-
ing problems, such as liquid–metal cooling of nuclear reactors [1,2], electromagnetic casting of metals [3], controlling ther-
monuclear fusion and plasma confinement [4,5], climate change forecasting, and sea water propulsion [6,7]. Theoretical
analyzes and mathematical modeling of MHD equations can be found in [8,9]. For steady-state MHD problems, the existence,
uniqueness, and finite element (FE) approximation have been described in previous studies, such as [10–12]. Variational
methods and numerical approximations for solving stationary MHD equations with different boundary conditions were also
studied in [13–15]. For time-dependent MHD, Schmidt [16] proposed a formulation of evolutionary MHD and established the
existence of global-in-time weak solutions using the Galerkin method. Time discretization schemes for MHD problems were
studied by Yuksel and Ingram [17], where they provided proofs of stability and error analyzes for semi-discrete approxima-
tions (FE in space) and fully-discrete approximation (FE in space, Crank–Nicolson time-stepping). Trenchea [18] proved the
unconditional stability of a partitioned method for the evolutionary full MHD equations with a high magnetic Reynolds num-
ber. Layton et al. [19] introduced two partitioned methods to solve evolutionary MHD equations and provided a complete
error analysis. An analysis of the semidiscrete approximation of the problem was presented in [17]. In the present study,
we provide a stability and convergence analysis of an FE discretization for a time-dependent MHD flow at a low magnetic
Reynolds number and under a quasi-static approximation with Backward-Euler time discretization.

Let X � Rd (d ¼ 2 or 3) be an open, regular domain. The dimensionless quasi-static MHD is modeled by the following sys-
tem (e.g., [17]). Given time T > 0, body force f, interaction parameter N > 0, Hartmann number M > 0, and by letting
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XT :¼ ½0; T� �X, find the velocity u : XT ! Rd, pressure p : XT ! R, electric current density j : XT ! Rd, magnetic field
B : XT ! Rd, and electric potential / : XT ! R that satisfy

N�1 ut þ u � ruð Þ ¼ f þM�2Du�rpþ j� B; r � u ¼ 0;
�r/þ u� B ¼ j; r � j ¼ 0;
r� B ¼ Rmj; r � B ¼ 0;

ð1Þ

subject to boundary and initial conditions

uðx; tÞ ¼ 0; 8ðx; tÞ 2 @X� ½0; T�;
/ðx; tÞ ¼ 0; 8ðx; tÞ 2 @X� ½0; T�;
uðx;0Þ ¼ u0ðxÞ; 8x 2 X:

ð2Þ

Here, Rm ¼ UL=g > 0;U is the characteristic speed, L is the length of the problem, g > 0 is the magnetic diffusivity,
u0 2 H1

0ðXÞ
d, andr � u0 ¼ 0. j andr� B in (1) and (3a) decouple when Rm � 1. If we suppose that B is an applied (and known)

magnetic field, (1) reduces to the following simplified MHD (SMHD) system (e.g., [17]). Find u; p;/ that satisfy

N�1 ut þ u � ruð Þ ¼ f þM�2Du�rpþ B�r/þ ðu� BÞ � B;

r � u ¼ 0;
� D/þr � ðu� BÞ ¼ 0;

ð3Þ

subject to (2).
The remainder of this paper is organized as follows. In Section 2, we present notations and a weak formulation of (3),

which are required for the stability and convergence analysis. In Section 3, we prove the stability analysis for fully-discrete
approximation with the Backward-Euler (BE) time stepping method. We prove that the method is unconditionally stable.
Moreover, for h;Dt ! 0, the order of convergence for the method is OðDt þ hrÞ, where r is the order of the FE approximation.
Therefore, the comprehensive error analysis and convergence of the fully-discrete approximation are proposed in Section 4.
In Section 5, several examples are presented to illustrate the convergence and the effectiveness of the method.

2. Problem formulation

We denote the L2-norm and inner product by ð�; �Þ and k � k, respectively. The Wk
pðXÞ-norm and the Wk

pðXÞ-semi-norm are
denoted by k � kp;k :¼ k � kWk

pðXÞ
and j �jWk

pðXÞ
, respectively. For p ¼ 2, we write HkðXÞ :¼Wk

2ðXÞ, and we denote k � kk and j �jk as
the corresponding norm and semi-norm. We denote the pressure, velocity, and electric potential spaces by

Q : ¼ q 2 L2ðXÞ :

Z
X

q ¼ 0
� �

;

X : ¼ v 2 H1ðXÞd : vj@X ¼ 0
n o

;

S : ¼ w 2 H1ðXÞ : wj@X ¼ 0
n o

respectively. X� ¼ H�1ðXÞ is the closure of L2ðXÞ in k:k�1, where

k fk�1 :¼ sup
v2X

ðf ;vÞ
krvk :

Let Lqð0; T; Wk
pðXÞÞ denote the space

Lqð0; T; Wk
pðXÞÞ ¼

v : ð0; TÞ !Wk
pðXÞ : v is measurable

and
R T

0 kvðtÞk
q
Wk

pðXÞ
dt <1

8<:
9=;;

endowed with the norm

jjv jjLqð0;T;Wk
pðXÞÞ

:¼
Z T

0
kvðtÞkq

Wk
pðXÞ

dt
� �1=q

:

We write LqðWk
pÞ ¼ Lqð0; T; Wk

pðXÞÞ and CmðWk
pÞ ¼ Cmð½0; T�; Wk

pðXÞÞ. For vðx; tÞ and 1 6 p 61, we introduce

kvk1;k : ¼ ess sup
0<t<T

kvðt; �Þkk;

kvkp;k : ¼
Z T

0
kvðt; �Þkp

kdt
� �1=p

:

Let V be the divergence-free subspace of X, i.e.,
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