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System integration of metabolism is considered in analogy to

the investigation of corporate misdemeanour. Motive, or goal-

oriented explanation, provides hypotheses that can guide the

investigation of network structure. Opportunity can be

established by correlative analysis using large-scale omics

resources. However, correlative approaches on their own

remain inconclusive and seldom identify all the links in a

network. Establishment of means, or the ability to act on other

network components and contribute to a phenotype, is

therefore crucial. This requires functional information.

Integration of quantitative data in the context of pathway

models provides a powerful approach to establish ‘means’.

This is illustrated by discussing: first, how protein abundance is

regulated by a network including transcript abundance,

translation and protein degradation and second, how a

combination of experimentation and modelling provides

information about pathway flux, an emergent network property

that integrates changes in proteins and metabolites and

determines composition and biomass.
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Introduction
Advances in technology to measure transcripts [1,2,3�,4�],
proteins [4�,5�] and metabolites [6,7�,8�] are generating

daunting amounts of data that have to be integrated and

linked to phenotypes in a predictive manner [9,10]. This

is challenging due to the heterogenous nature of omics

data [11�,12], the interactive structure of biological net-

works [11�,13] and their flexible remodelling during de-

velopment and in response to the environment

[11�,14�,15]. Recent reviews have discussed how meta-

bolic traits can be mapped to genetic polymorphisms

[15,16,17] and omics data can be integrated into networks

in specialised metabolism [10,16–19]. Complex pathway

topology and overlapping functionalities in primary

metabolism make integration especially difficult. Convic-

tion is especially difficult when crimes are perpetrated by

many people, acting often via intermediaries. I examine

systems integration in terms of the criminalistics concepts

of ‘means, motive and opportunity’ and highlight the

importance of establishing ‘means’ by integrating quan-

titative data into pathway models. A broader treatment of

the importance of quantification in biology can be found

in [20,21�].

Means, motive and opportunity
The lines of evidence that establish guilt in a law court

can be schematised as the opportunity to commit the

crime, the ability or means to commit it, and motive.

Motive is not essential for conviction but makes it easier

to persuade a jury, due to the human propensity to

rationalise in terms of goals. In biology, goal-oriented

explanations are, at the worst, teleological arguments.

Used judiciously, they are useful as hypotheses to guide

experimental design and data evaluation and demonstrate

opportunity and means.

Opportunity — integration of large data sets
by correlation
In a law court, opportunity is usually established by

demonstrating that the defendant was present at the

scene of crime, and disproved by an alibi.

Omics data can be used to establish opportunity via ‘guilt-

by-association’ [18]. Web resources exist to identify sets

of transcripts that change in a correlated manner in

different data sets (see [10] for references). Analogous

approaches are applicable to proteins and metabolites,

although currently limited by amount of data in the public

domain and, for metabolites, the lack of standardised

protocols for sample handling, metabolite determination

and data validation [7�]. Further omics resources include

information on cell-specific expression patterns of tran-

scripts and proteins [5�,22–25,26�], the subcellular

location of proteins (http://suba.plantenergy.uwa.e-

du.au/) and large-scale analyses of protein-protein inter-

actions [27].

Genetics can provide alibis by, for example, showing that

a given phenotypic response is unaltered when a gene is

deleted. However, this approach is not unambiguous

because redundant genes may substitute for the deleted

gene. The demonstration that deletion prevents or

modifies a response is usually taken as evidence for a

Available online at www.sciencedirect.com

www.sciencedirect.com Current Opinion in Plant Biology 2013, 16:381–388

mstitt@mpimp-golm.mpg.de
http://www.sciencedirect.com/science/journal/13695266/16/3
http://dx.doi.org/10.1016/j.pbi.2013.05.001
http://dx.doi.org/10.1016/j.pbi.2013.02.012
http://suba.plantenergy.uwa.edu.au/
http://suba.plantenergy.uwa.edu.au/
http://www.sciencedirect.com/science/journal/13695266


gene’s involvement. This conclusion depends on there

being no side effects, which is unlikely in a complex

network, emphasising the important of using small and, if

possible, spatially restricted or temporally restricted

genetic interventions.

Correlative analysis followed by functional analysis of

candidates has led to important discoveries in secondary

metabolism [10,16–19] but has arguably been less suc-

cessful in central metabolism. Recent advances include

definition of the starch degradation pathway (see [28]),

the identification of novel transporters and pathways in

C4 photosynthesis [3�,29�] and the identification of trans-

porters in photorespiration [30�,31�].

Advances have been made in identifying metabolic states

that are associated with faster growth. Whilst individual

metabolites seldom correlate with biomass, multivariate

approaches have identified sets of metabolites that pre-

dict biomass in large populations of Arabidopsis geno-

types [32,33]. Higher biomass also correlated with

allocation of a larger proportion of total protein to

enzymes in central metabolism [34]. The recent discov-

ery in Arabidopsis [35�,36�] and maize [37�] that the

extent of heterosis can be predicted from the metabolic

profiles of parental lines has practical implications. Multi-

variate prediction of quality traits is also possible [38].

Nonetheless, correlative studies only establish a prob-

ability that a given metabolic state is associated with

faster growth, but do not explain why this is so. Genetic

mapping can define genomic regions and ultimately poly-

morphisms that underlie variation in metabolic traits

[10,16,17]. However, while this provides insights into

the genetic and molecular architecture of the networks

that control metabolic traits, it may not explain why

certain metabolic states are associated with greater bio-

mass production.

Several issues can interfere with correlative analyses of

large omics data sets. Coordinated responses often make

it difficult to identify key genes, proteins or metabolites.

Analyses are complicated by complex spatial location

[5�,23,25,26�] and temporal responses. Transcripts typi-

cally change within minutes to a few hours, some proteins

change in a similar time frame but many change over a

time frame of days, whilst metabolites show an even

wider dynamic range [4�,11�,14�,39,40�]. Another pro-

blem is redundancy, which is itself often context-de-

pendent. Sucrose synthase (SUS) provides a striking

example. Whilst mutations in individual SUS genes lead

to strong phenotypes in maize seeds, a quadruple SUS
knockout had no major phenotype in Arabidopsis rosettes

[41]. In fact, correlative analyses frequently fail to detect

connections between entities that are known to be

mechanistically linked. For example, levels of transcripts

and their encoded proteins often change independently

in microbes [42,43], animals [44,45�] and plants [4�,39,46].

Agreement is better at the cell-specific level [5�] and after

long-term treatments, but is especially weak in short-term

responses [4�,34]. Another example is a poor correlation

between the levels of enzymes and the metabolites they

act on [12,34].

Establishing the ‘means’ — using quantitative
data to establish mechanistic links
Even if ‘opportunity’ can be established, conviction

requires evidence of ‘means’, that is, the ability to commit

a crime. Most omics data are non-quantitative, in the

sense that the units are relative. Relative data are useful

for building up a qualitative understanding of function via

aggregation of information. However, they are unsuitable

for a quantitative predictive analysis, which is often

necessary to demonstrate a chain or web of events.

Absolute transcript abundance can be measured by add-

ing external RNA standards before extraction [47] or by

combining RNA-seq with information about total RNA

levels [45�,48,49]. Absolute protein abundance can be

determined using peptide standards or, on a larger scale,

by relating the summed mass spectrometric (MS) signals

to total protein content or using APEX, which estimates

protein abundance from the fraction of peptide mass

spectra associated with that protein after correction for

prior expectation of observing the peptides [49]. For

metabolites, it is essential to add standards [50], prefer-

ably also before tissue extraction to assess loss during

sample handling and preparation [7�,12].

The value of large-scale quantitative data sets for tran-

scripts, proteins and metabolites will be illustrated using

the two apparent discrepancies between omics data sets

mentioned earlier. They illustrate how quantitative data

and models can be used to learn if events at one level can

lead to a given output at a higher level in a network.

Quantitative analysis of the relation between
transcript levels and protein abundance
As already mentioned, the responses of transcripts and

the proteins that they encode are often poorly correlated.

Knowledge about mechanistic relationships points to

possible reasons for this discrepancy. First, the rate of

protein synthesis depends on the rate of translation as

well as transcript abundance. A recent analysis in mouse

fibroblasts showed that translational regulation makes a

larger contribution than transcript abundance to the

determination of protein abundance [45�]. Translational

regulation also plays a key role in plants [51,52�]. Second,

a change in transcript abundance cannot lead to a signifi-

cant increase in protein abundance unless there is enough

transcript to support a high enough rate of translation to

alter protein abundance in a given time interval. A study

with Arabidopsis rosettes [47] used quantitative data on

transcript abundance and polysome loading to model the

synthesis rates of 35 enzymes. These estimates were
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