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a b s t r a c t

Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metab-
olism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy
numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as
transcription, replication, translation, and histone modifications. Here we introduce the main theoret-
ical concepts of stochastic single-enzyme activity starting from the Michaelis–Menten enzyme mecha-
nism. Next, we discuss stochasticity of multi-substrate enzymes, of enzymes and receptors with
multiple conformational states and finally, how fluctuations in receptor activity arise from fluctuations
in signal concentration. This paper aims to introduce the exciting field of single-molecule enzyme
kinetics and stochasticity to a wider audience of biochemists and systems biologists.

� 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

1. Introduction

Essentially all cellular reactions are catalyzed by enzymes,
regardless of whether metabolism, signal transduction, or gene
expression is considered. In metabolism, enzymes interconvert
metabolites to generate the energy and precursors for macromo-
lecular synthesis. As passive or active transporters, enzymes trans-
port molecules in and out of the cell. Other enzymes covalently
modify signaling proteins, metabolic enzymes, and nucleosomes,
or transport macromolecules across the cell by free energy-driven
translocation along the cytoskeleton. Thus, enzymes can operate as
catalysts, either coupled to free energy transduction or not, or as
molecular motors. In the latter case free energy dissipation is cou-
pled to, for instance, directed motion of enzymes along actin or to
the bacterial flagella in chemotaxis. When environmental condi-
tions change, organisms adjust enzyme concentrations to rewire
their molecular networks to better meet current demands. Natural
selection acts on beneficial, genetic mutations that alter the

concentrations or kinetic properties of enzymes. In other words,
enzymes lie at the basis of cell functioning and are central to any
quantitative understanding in cell biology. Moreover, molecular
systems biology studies require knowledge of enzyme properties
to be able to assess how the concerted activities of enzymes, orga-
nized in networks, give rise to cell function.

The quantitative understanding of enzyme kinetics was
pioneered by Michaelis and Menten in 1913 [1], followed by Briggs
and Haldane in 1925 [2]. About 50 years later, Cleland unified most
of this work in a comprehensive theory of monomeric enzyme
kinetics in a series of seminal papers [3–5]. The work about feed-
back-regulation of metabolic enzymes [6,7] initiated studies on
the kinetics of oligomeric enzymes, which were later followed by
many studies on hemoglobin (reviewed in [8]). Oligomeric en-
zymes are composed out of several, interacting subunits that can
display cooperativity and may be under allosteric control [9]. This
lead to the development of allosteric and cooperative enzyme
kinetics: the concerted symmetry model of Monod, Wyman, and
Changeux [10], the sequential model by Koshland, Nemethy, and
Filmer [11], and more recently, the reversible Hill equation by Hof-
meyr and Cornish-Bowden [12]. All these theories of enzymology
are macroscopic theories of enzyme kinetics, considering the aver-
age properties of ensembles of enzymes.
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Macroscopic theories in enzymology about monomeric and
multimeric enzyme kinetics do not refer to the inherently stochas-
tic aspects of the activity of single enzyme molecules. Enzyme
ensembles concern thousands to millions of proteins that each
function independently. Much can be learned about enzymes from
those studies. For example, in metabolism the simultaneous activ-
ity of a huge number of enzymes matters most often. Conse-
quently, the ensemble perspective gives the relevant picture.
However, from the study of single enzyme molecules valuable
additional insight can be gained about enzyme mechanisms
[13,14]. Moreover, in many cellular functions it is the activity of
single enzymes that matters. Examples are protein transport along
the cytoskeleton or mRNA synthesis via transcription, which are
inherently single-enzyme activities. In those latter examples, spon-
taneous, stochastic fluctuations in the activity of a single enzyme
can have profound consequences that can be propagated to the
phenotypic properties of a cell, on which natural selection acts.
Thus in those cases the study of single enzyme molecules is re-
quired to understand fundamental aspects of cell biology.

The experimental study of single enzyme copies was pioneered
by B. Rotman in 1961 [15], but gained real momentum only three
decades later with the advance of single-molecule fluorescence
microscopy techniques (reviewed in [14]). Here we limit ourselves
to the theoretical aspects of the activity of single enzyme mole-
cules. We use several illustrative examples of the activity of single
enzyme molecules to introduce the reader to the main stochastic
models (Supplemental material) and concepts of this exciting field
in enzymology.

2. Results

2.1. Fluctuations in the activity of a Michaelis–Menten enzyme

In this section we derive some of the microscopic properties of
enzyme kinetics, which concern the stochastic activity of the single
enzyme molecules, and relate those to classical enzyme kinetic
parameters (i.e. KM and VMAX). In particular, we discuss the distri-
bution of times between subsequent product formations catalyzed
by a single enzyme, the turnover time distribution, and how this
relates to the catalysis rate of the enzyme. In the Supplemental
material we present two methods how this can be done for arbi-
trarily complex enzyme mechanisms. When the Michaelis–Menten
(MM) mechanism is considered, the mean turnover time turns out
to give rise to the well-known MM rate equation.

The simplest model that gives rise to the MM enzyme mechanism
considers one enzyme (E), one substrate (S), one enzyme-substrate
complex (ES), and one product (P). The enzyme-substrate complex
can either dissociate into the enzyme and substrate or catalysis can
occur giving rise to product and the original enzyme (Fig. 1A).

Deterministic models of enzyme activity fail to capture the
discreteness and stochasticity effects that occur when enzyme mole-
cules are present at low copy numbers. If we assume that the cell is a
well-stirred compartment, we can ignore molecular positions and
diffusion. Then, we can use the chemical master equation (CME)
[16] to describe the stochastic activity of a single enzyme (reviewed
in [17]). The CME determines the probability that the system is in a
specific state at a given (future) time. A single state is a particular
combination of the number of E, ES, S and P molecules per cell. Note
that from the stochastic perspective the state is a vector of integers
(the (copy) number of a specific molecule per cell) and not of real
numbers as one would have in a deterministic, macroscopic descrip-
tion when concentrations are considered. The general description of
the CME is given in Eq. (S-6) and describes the rate of change in the
probability mass to observe the system in a particular state. It is a
balance equation for the probability mass of the states. A more
specific description of the CME is given by:

dPðx;tjx0;t0Þ
dt

¼
X
r2R

arðx�v rÞ �Pðx�v r;tjx0;t0Þ�
X
r2R

arðxÞ �Pðx;tjx0;t0Þ

ð1Þ

Here, x is the state vector which contains the number of molecules
(denoted later by N) of each species in time, P(x,tjx0,t0) is the prob-
ability to observe the system in state x at time t given the initial
state x0 at time t0, vr is the state-change vector of reaction r (vector
with stoichiometric coefficients) and ar(x) is the propensity function
of reaction r, i.e., the probability per unit time that reaction r fires
given that the system is currently in state x.

For the simple model shown in Fig. 1A, the propensity functions
are given by (very similar to mass-action kinetics),

a1ðxÞ ¼ kþ1 � NE � NS

a2ðxÞ ¼ k�1 � NES

a3ðxÞ ¼ kc � NES

ð2Þ

where NE, NS, and NES are the copy numbers – number of molecules
– of E, S, and ES, respectively. Note that rate constants of unimolec-
ular reactions are independent of the system volume (V), whereas
rate constants of bimolecular reactions (e.g. kþ1 ) are inversely pro-
portional to V. This is because the search time for two reactant mol-
ecules depends on volume [18].

If we assume that the number of substrate molecules, NS, is held
constant the state-change vectors for the simple enzyme kinetics
model are given by,

v1 ¼ ð�1;1;0Þ
v2 ¼ ð1;�1;0Þ
v3 ¼ ð1;�1;1Þ

ð3Þ

of which the entries correspond to the stoichiometric coefficients of
the molecules in the same order as they occur in the state vector x:

x ¼ ðNE;NES;NPÞ ð4Þ

Thus, reaction (2) produces one molecule E and consumes one mol-
ecule ES (S is considered fixed and therefore not specified).

We consider only a single enzyme copy, which implies that NES

is 0 if NE is 1 and vice versa (Fig. 1B and 1C). Production events of P
will occur at irregular intervals when a single enzyme is modeled
with the CME. An example is shown in Fig. 1D where three differ-
ent trajectories of a stochastic simulation are shown. Each simula-
tion started from the same initial conditions and with the same
kinetic parameters. These trajectories fluctuate around the analyt-
ical solution for a large ensemble of the same enzyme molecules.
This ensemble is described by the set of ordinary differential equa-
tions that characterize the deterministic, macroscopic dynamics of
an ensemble of independent enzyme molecules.

We are interested in the time to make one product molecule,
i.e., to increase NP by 1. Directly after the previous product mole-
cule has been synthesized the enzyme is in the unbound state.
Therefore, we consider an initial condition with NE(0) = 1,
NES(0) = 0 and use the CME to determine how the probability
P(NE, NES, NP, t) changes over time from this initial condition. Note
that the number of molecules of P does not matter in this case, as it
does not influence any of the elementary enzyme rates.

Substituting Eqs. (2)–(4) into Eq. (1) gives the CME for our sim-
ple enzyme kinetics model:

dPð1;0;NP ; tjx0; t0Þ
dt

¼ k�1 � Pð0;1;NP; tjx0; t0Þ þ kc � Pð0;1;NP

� 1; tjx0; t0Þ � kþ1 � NS � Pð1;0;NP; tjx0; t0Þ

� dPð0;1;NP ; tjx0; t0Þ
dt

¼ kþ1 � NS � Pð1;0;NP; tjx0; t0Þ � k�1 þ kc
� �

� Pð0;1;NP ; tjx0; t0Þ ð5Þ
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