Accepted Manuscript

Title: Calcium Signaling in Trypanosomatid Parasites

Author: Roberto Docampo Guozhong Huang

Please cite this article as: R. Docampo, G. Huang, Calcium Signaling in Trypanosomatid Parasites, *Cell Calcium* (2014), http://dx.doi.org/10.1016/j.ceca.2014.10.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Short title: Calcium Signaling in Trypanosomes

Calcium Signaling in Trypanosomatid Parasites

Roberto Docampo^{1,2*}, and Guozhong Huang¹

¹Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30620, USA and ²Departamento de Patologia Clínica, State University of Campinas, Campinas, SP 13083, Brazil

Keywords: Calcium, Acidocalcisome, Acidic store, Trypanosoma, Leishmania, inositol 1,4,5-trisphosphate receptor

**Corresponding author:* R. Docampo, Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602. Tel: 706-542-8104; fax: 706-542-9493; email: rdocampo@uga.edu

Abbreviations: FCaBP, flagellar calcium binding protein; VTC, vacuolar transporter chaperone.

ABSTRACT

Calcium ion (Ca^{2+}) is an important second messenger in trypanosomatids and essential for their survival although prolonged high intracellular Ca^{2+} levels lead to cell death. As other eukaryotic cells, trypanosomes use two sources of Ca^{2+} for generating signals: Ca^{2+} release from intracellular stores and Ca^{2+} entry across the plasma membrane. Ca^{2+} release from intracellular stores is controlled by the inositol 1,4,5-trisphosphate receptor (IP₃R) that is located in acidocalcisomes, acidic organelles that are the primary Ca^{2+} reservoir in these cells. A plasma membrane Ca^{2+} -ATPase controls the cytosolic Ca^{2+} levels and a number of pumps and exchangers are responsible for Ca^{2+} uptake and release from intracellular compartments. The trypanosomatid genomes contain a wide variety of signaling and regulatory proteins that bind Ca^{2+} as well as many Ca^{2+} -binding Download English Version:

https://daneshyari.com/en/article/10926185

Download Persian Version:

https://daneshyari.com/article/10926185

Daneshyari.com