Contents lists available at ScienceDirect



journal homepage: www.domesticanimalendo.com

### Mechanisms of protein balance in skeletal muscle

### T.G. Anthony\*

Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA

#### A R T I C L E I N F O

Article history: Received 5 October 2015 Received in revised form 23 February 2016 Accepted 29 February 2016

Keywords: Proteostasis Muscle protein synthesis mRNA translation Muscle protein degradation Proteolysis

#### ABSTRACT

Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress. © 2016 Elsevier Inc. All rights reserved.

#### 1. Introduction

Worldwide population growth has increased global demand for adequate protein nutrition [1]. Novel strategies to increase meat production are needed while minimizing the adverse effects on the environment [2]. Genetic approaches to increase production of animal products through selective breeding are successful but also result in economic, environmental, and ethical complications [3,4]. Overall, efforts to meet the world's protein needs against a backdrop of environmental stress (ie, physical, chemical, and biological constraints on the productivity of the species [5]) are creating greater pressures on animal agriculture than ever before. For these reasons, a greater understanding of the fundamental control points in determining muscle protein balance is relevant to animal agriculture sustainability.

Over the past 2 decades, advances in genomics allowed for selective breeding to be more informed and, thus,

\* Corresponding author. Tel.: 848-932-6331.

E-mail address: tracy.anthony@rutgers.edu.

targeted. Recent developments in technology have further bolstered if not replaced the genomic age with an age of proteomics and metabolomics. These technologies allow for even more sophisticated questions to be asked, moving the field from monitoring genotype to phenotype [6]. A deeper understanding of the phenotypic mechanisms that regulate muscle mass will in turn provide new insight about how to best address environmental challenges to animal growth and improve overall health of livestock. With the above in mind, the following perspective was crafted to provide a basic overview of recent advances in the study of skeletal muscle protein balance *in vivo*. This information is aimed to inform the fields of domestic and livestock animal production about ways to better monitor or alter capacity and efficiency of growth, with an emphasis on skeletal muscle.

## 2. Evolution of methodology in assessing protein balance

A table summarizing past, current, and emerging technologies to evaluate skeletal muscle protein synthesis and





CrossMark

<sup>0739-7240/\$ -</sup> see front matter © 2016 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.domaniend.2016.02.012

turnover in animals are found in Table 1. Nitrogen balance has traditionally served as a surrogate marker to assess whole body protein balance and growth [7,8]. Subtracting nitrogen intake from output produces a value which reflects growth (>0), maintenance (=0), or atrophy (<0). Although this measure remains the fundamental basis for determining dietary protein requirements in mammals, this technique reflects whole body and not skeletal muscle specifically. Muscle protein synthesis (MPS) capacity can be reflected by the RNA-to-protein ratio, a classic measurement in skeletal muscle [9–11]. Although still in use today, most research settings use instead a variety of techniques that measure the rate of skeletal MPS and turnover more directly. These methods use an assortment of metabolic compounds and labeling techniques in combination with highly sensitive and specialized instruments to calculate rates of MPS and/or muscle protein breakdown (MPB) or simply visualize the expression of one or more individual proteins as biomarkers of muscle growth. To estimate global rates of MPS or MPB, the incorporation and/or flux of an injected or infused metabolic tracer (ie, radioactive or stable amino acid isotope mixed with an unlabeled amino acid or tracee) is measured into and/or out of muscle tissues over a relatively short and defined period of time [12-16]. Analyses of precursor and product tracer/tracee enrichment involve

sophisticated methods of chromatography and mass spectrometry and in some cases complex tracer kinetic calculations [17]. Muscle protein synthesis measurements over longer periods of time (d or wk) can be accomplished by ingestion of deuterium oxide (heavy water) [22,23]. This method allows for calculation of DNA synthesis in addition to MPS and turnover [24]. Metabolic tracer approaches are very useful in generating tissue averages, changes over short periods of time, assessing muscle fiber-type differences, and detecting changes within subcellular organelles (eg, mitochondrial protein synthesis) [18,19]. Synthesis rates of individual proteins can also be assessed [20,25].

Applications that rely on antibody-based detection methods such as immunoblotting, immunofluorescence, and flow cytometry are commonly used to visualize protein expression and provide a qualitative measure of the proteome. The tagging of newly synthesized proteins with puromycin is a more recent method being used to estimate new protein synthesis in muscle [26,27]. Another approach uses biotinylated puromycin to label newly synthesized proteins in cell-free conditions, followed by proteomic analysis to generate a snapshot of the translatome [28,29]. These protein tagging approaches to assess the proteome are faster and easier than 2-dimensional gel electrophoresis methods to assess the proteome [10,21].

#### Table 1

Common and emerging technologies to assess muscle protein balance in domestic animals and livestock.

| Method                                                         | Applications                                                                                                                                                          | Strengths                                                                                            | Limitations                                                                                                                                                                                     | Refs    |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Nitrogen balance                                               | Whole body protein balance and growth                                                                                                                                 | Simple, sensitive, noninvasive                                                                       | Cannot assess muscle-specific<br>effects; difficult to measure losses<br>precisely                                                                                                              | [7,8]   |
| RNA/protein ratio                                              | Estimates protein synthesis<br>capacity                                                                                                                               | Simple, inexpensive                                                                                  | Crude                                                                                                                                                                                           | [9–11]  |
| Amino acid isotope tracer<br>kinetics                          | Whole body protein synthesis<br>and breakdown, tissue and fiber<br>type-specific protein synthesis<br>and breakdown, individual<br>protein synthesis and<br>breakdown | Sensitive, can assess change<br>over short time frames                                               | May not capture proteins with<br>longer half-lives; cannot assess<br>free-living environments                                                                                                   | [12–21] |
| Deuterium oxide/heavy<br>water enrichment                      | Protein synthesis, protein<br>breakdown and DNA synthesis<br>in whole body, skeletal muscle,<br>specific fiber types and<br>individual proteins                       | Can assess free living conditions<br>over extended periods of time                                   | Isotope expense, sophisticated<br>equipment and calculations<br>required                                                                                                                        | [22–25] |
| Two-dimensional electrophoresis                                | Differential expression of<br>specific tissue proteins using<br>mass spectrometry                                                                                     | Can visualize modifications<br>affecting protein activity in<br>addition to changes in<br>expression | Protein identification is often<br>targeted versus global                                                                                                                                       | [10]    |
| SUnSET - non-isotopic<br>immunodetection of<br>puromycin       | Skeletal muscle protein<br>synthesis (whole tissue and<br>fiber type)                                                                                                 | Simple, inexpensive snapshot of nascent MPS                                                          | Qualitative, puromycin dose may<br>inhibit protein synthesis in other<br>tissues; cannot assess breakdown                                                                                       | [26,27] |
| PUNCH-P - puromycin-<br>associated nascent chain<br>proteomics | Genome-wide identification<br>and quantification of protein<br>synthesis in tissues                                                                                   | <i>Ex vivo</i> , relatively simple, less expensive than Ribo-Seq                                     | Qualitative, sophisticated<br>equipment required; cannot assess<br>breakdown                                                                                                                    | [28,29] |
| Ribosomal profiling                                            | Tissue-specific global<br>quantification of mRNA<br>translation                                                                                                       | Ex vivo, global snapshot of both<br>translated and untranslated<br>mRNAs                             | Conducting gene expression across<br>polysome fractions is time<br>consuming and expensive; cannot<br>assess breakdown                                                                          | [30,31] |
| Ribo-Seq                                                       | Global quantification of the<br>average ribosome density on<br>mRNA                                                                                                   | <i>Ex vivo</i> , comprehensive<br>evaluation of nascent mRNA<br>translation                          | Expensive; technology not yet<br>optimized for use in animal tissues;<br>unable to reveal the proportion of<br>untranslated mRNA relative to<br>polysome bound mRNA; cannot<br>assess breakdown | [32–35] |

Abbreviation: MPS, muscle protein synthesis.

Download English Version:

# https://daneshyari.com/en/article/10961140

Download Persian Version:

https://daneshyari.com/article/10961140

Daneshyari.com