
Contents lists available at ScienceDirect

Chemical Physics

journal homepage: www.elsevier.com/locate/chemphys

Theoretical analysis of the drift and diffusion of charge carriers in thin layers
of organic crystals
D.V. Nikerova, N.A. Koroleva, V.R. Nikitenkoa,⁎, A.P. Tyutnevb
aNational Research Nuclear University ≪MEPhI≫ Moscow Engineering Physics Institute, 31 Kashirskoe shosse, Moscow 115409, Russia
bNational Research University Higher School of Economics, 20 Miasnitskaya Ulitsa, Moscow 101000, Russia

A B S T R A C T

The influence of diffusion on the current shape in the time-of-flight (TOF) experiment under conditions of the quasiequilibrium transport has been considered. An
analytical expression for the transient current density has been obtained for the case of the reflecting front electrode. The expression has been found to be in a better
agreement with the Monte-Carlo numerical modeling than the usual expression based on the standard convection–diffusion equation. We found an estimate of the
minimum layer thickness for a flat plateau appearance on TOF current transients.

1. Introduction

Organic materials have a variety of applications in electronic de-
vices: light-emitting diodes [1], photovoltaic cells [2], memory devices
[3], etc. In particular, organic crystals, e.g. pentacene, are considered as
perspective materials for field-effect transistors [4]. Theoretical ana-
lysis of the hopping drift and diffusion of charge carriers in thin films of
a slightly disordered material (a molecular organic crystal at room
temperature) has been carried out in this paper. Electron (hole) mobi-
lity is the key parameter which defines characteristics of electronic
devices. The traditional time-of-flight (TOF) method for mobility
measurements is typically applicable only in the films which are thicker
than 1 µm (see [5-12]). Attempts to do TOF measurements (by the use
of dye generation layers) in thin (about 100 nm) films widely used in
organic electronics usually produce highly dispersive current signals
[13,14] although non-dispersive signal was reported recently for the
sub-micrometer sample [15]. In thin films, the contribution of diffusion
to the transport of charge carriers which is usually negligible under TOF
conditions can rise significantly. As a result, an adequate choice of
boundary conditions becomes important for the theoretical description
of the TOF signals.

In this work, the analytical solutions of the convection–diffusion
equation (CDE) [16] are compared for two specific types of boundary
conditions. The diffusivity D and mobility µ are presumed constant
which is true for the case of the quasiequilibrium transport and in
particular in materials with a small disorder. One solution described by
the Gaussian packet corresponds to the 1D infinite medium (contacts
are supposed not to disturb the motion of charge carriers). This solution
has been used ubiquitously in TOF analyses under condition of the

quasiequilibrium transport [17–20]. Another one obtained in this work
applies to a reflecting boundary condition at the front (illuminated)
electrode. Additionally, both solutions have been compared with the
results of a Monte-Carlo (MC) numerical modeling. It is shown that the
latter solution agrees better with the MC-results. An upper limit for the
layer thickness allowing the Gaussian description has been found for
the typical field strength of 107 V/m.

2. Theoretical model and analytic results

The theoretical analysis is based on the 1D convection–diffusion
equation [16] for the concentration of charge carriers n x t( , )
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where

=V µF0 (2)

and F0 is the constant and uniform electric field.
The initial condition corresponds to a surface generation of charge

carriers ( 0 is a surface charge density and L is a layer thickness):

= +n x x L( , 0) ( ), 0.0 (3)

The second boundary condition assumes the counter electrode is not
disturbing charge flow:

+ =n t( , ) 0, (4)

while the first one could be established in two ways.
One way assumes that the front electrode also does not disturb

charge flow
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=n t( , ) 0, (5)

which leads to a well-known solution for the concentration in an in-
finite medium:
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For the reflecting front electrode [16], it is assumed that

=
=
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The following analytical solution has been obtained (see Appendix):
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It is convenient to introduce dimensionless variables:
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Then, solutions (6) and (8) may be written as follows:
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The total current density = +j j jdr diff (the sum of the drift and
diffusion components) and its dimensionless expression Lj eV/( )0
looks like [16]

= +
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Now, dimensionless expressions (10) and (11) were substituted into
the integral (12) to give the following results:
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It should be noted that expression (13) coincides with the result
obtained earlier in [20]. Expressions (13) and (14) differ by a factor of
two in the denominator of the last term. Expressions for the di-
mensionless drift current density for solutions (10) and (11) look like
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The difference between expressions (15) and (16) is a direct con-
sequence of the assumption that the front electrode does not disturb
charge flow so that carriers spend some time outside the sample (in the
region <x 0). Expressions for the dimensionless diffusion current
density based on solutions (10) and (11) have the following form:
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In the practical absence of energy disorder and for a moderate
electric field, the Einstein’s relation between diffusivity and mobility
has the usual form

=D kT
e

µ. (19)

3. Numerical modeling

We assume that an electron performs random walk on a cubic lattice
of localized states (hopping centers). The energy disorder is small,

=kT/( ) 0.1, where is a variance of the Gaussian density of states
(DOS). The initial position of an electron corresponds to the co-
ordinate =x 0 but then it walks in the presence of the electric field
directed against the OX axis. The transversal size of the sample con-
siderably exceeds its thickness (near 1D geometry).

There are no jumps to the region <x 0 because the hopping states
are absent. The moment the carrier achieves the right boundary means
the end of computations in a given test. Tests are repeated no less than
10 000 times for each set of parameters. Hopping rates are given by the
well-known Miller-Abraham’s formula. The MC algorithm for simula-
tion of random walk has been applied many times in the framework of
the Gaussian disorder model [5,21,22]. The concentration of charge
carriers was calculated as the number of charge carriers (summation
over all tests) which are situated in a small volume =V xYZ
(Y , Z are the transversal sizes of the sample) during a given small time
interval t divided by V .

Parameter values used in computations are as follows: =F 10 V/m0
7 ,

= 0.0025eV, =T 300K, frequency factor of the Miller-Abraham’s for-
mula = 10 s0

13 1, lattice constant =a 1nm0 , =a2 100 where is the
reciprocal localization radius of the wave function. A typical hopping
time = =t aexp[2 ] 2.2nsr 0

1
0 .

Also, in our case the diffusivity is equal to

=D a
t

0
2

r (20)

Then, we find =D 4.55 10 m /s10 2 , =µ 1.76 10 m /(V s)8 2 and lastly,
=V 0.176m/s.

4. Calculation results and discussion

Figs. 1 and 2 demonstrate the normalized temporal variation of the
total current density with a layer thickness as a parameter (note re-
spective curves are plotted on a semi-logarithmic scale). The normal-
ization unit of current density is 10−12 A/m2.

We see that according to both MC-simulations and an analytical
treatment transient currents decrease at short times and in thin layers
(L 40nm) so that the flat plateau is absent. Qualitatively, the form of
these curves resembles that characteristic of the dispersive (highly
nonequilibrium) transport. However, the reason for the current de-
crease at short times should not be associated with this factor as due to
the fact that both diffusivity and mobility are constants ostensibly ar-
gues against such proposition. The reason, apparently, should be as-
cribed to the waning influence of diffusion with increasing time as the
concentration gradients decrease. Thus, even in the case of the qua-
siequilibrium transport it seems impossible to produce flat plateaus on
TOF current shapes in sufficiently thin films.
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