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A B S T R A C T

In this work, the ground state properties of two dimensional Fermi gas system interacting in a potential con-
sisting of harmonic and Gaussian terms are investigated in the frame of Thomas-Fermi approximation. The depth
and the curvature of the potential are changed by varying confinement parameters and the influence of the
constraining conditions on the system properties like the density profile, the kinetic and the potential energy of
the fermionic system is analyzed comprehensively. The deviations of the results due to the Gaussian potential are
also determined by comparing the results with those obtained for pure harmonic potential. Calculations are also
performed analytically for non-interacting case for comparative purposes. The results show that the confinement
parameters play crucial role on the ground state properties of confined system.

1. Introduction

Since the remarkable experiments beginning with the observation of
Bose-Einstein condensation [1–2] and soon after followed by the rea-
lization of the degenerate Fermi gas of 40K [3], there have been great
interest to investigate the characteristics of both confined Fermi and
Bose systems at low temperatures.

Fermions can be experimentally trapped in a two dimensional (2D)
space by optical lattice [4,5] and the physics of these systems is very
significant for many aspects. For example, constraining a Fermi gas in
the boundary conditions of 2D space reveals some exiting many body
effects as compared to three dimensional counterparts [6]. Some pho-
toemission-type experiments on atomic two dimensional Fermi gas
[4,5] has shown some remarkable changes attributed to stronger
pairing fluctuations due to the reduction of dimensions. Watanabe et al.
[6] investigated the physical properties like local density of states of a
two dimensional Fermi gas by including these effects. Additionally, two
dimensional Fermi gas can be formed within the interface region of
hetero-structures and establish a basis for future device applications
[7–9].

The shape of a trap influences the behaviour of the confined gas,
noticeably. In the past, the physical properties such as density and
momentum distribution of two dimensional gas trapped in a perfect
harmonic potential have been investigated extensively by many authors
[10–15]. However, recent developments in laboratory techniques have

allowed experimentalist to form a confinement in various shapes which
provide an opportunity to analyze some unusual effects due to the
change in the spatial constraining [16–22]. For example, Hueck et al.
[16] have carried out an experiment trapping two dimensional Fermi
gas in a box potential and observe the Pauli blocking in the momentum
space for attractive interacting Fermi systems. They also perform
measurements on the density distribution of Fermi gas as a function of
the chemical potential for non-interacting case and show the accuracy
of their results by comparing with the corresponding statistical physics
equations. Koinov [18] has investigated the collective excitations of
fermion and boson mixture within the Hubbard model in a sufficiently
deep periodic optical lattice potential obtained by standing waves of
laser light. By superimposing a laser beam on to a harmonically con-
fined condensate, some experimental groups have successfully observed
some unusual effects which are not encountered in a pure harmonic
trap [19]. In that case, the confining potential has been approximated
by the combination of harmonic and Gaussian terms [19–22]. Many
theoretical studies have reported predictions of various interesting
physical properties of Bose systems [23–25] for such type of confine-
ment or its reduced forms (quartic plus quadratic) obtained by weak
laser beam approximation. For example, Aftalion and Mason [24] have
performed calculations on the density profile of rotating Bose-Einstein
condensates trapped in a potential composed of harmonic and Gaussian
terms. The variation of density profile with radial distance also dis-
cussed for different potential constants. A few studies have been
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focused on the behaviour of two dimensional Fermi gas system confined
in a combination of harmonic potential and a Gaussian one or it’s re-
duced form. Howe et al. [26] studied on the fascinating properties of
rotating polarized Fermi systems trapped by an an-harmonic potential
consisting of harmonic and quartic terms. Ögren and Heiselberg [27]
calculated the level densities and shell oscillations and other system
properties of ultra-cold dilute gas of fermionic atoms confined by an-
harmonic quartic trap potentials by Hartre-Fock approximation.

The strength of interaction between the fermions is also an influ-
encing factor determining the physical properties of confined systems
[17,27–28]. For example, Hagymási et al. [28] examine how electron
interactions modify the momentum distribution of heavy fermions in an
extended periodic Anderson model by comparing the system with non-
interacting case. We have also previously discussed the crucial role of
electron interaction strength and confining potential type on the phy-
sical properties of Fermi system for different potentials in the frame of
Thomas-Fermi approximation [8,14–15,29–33].

Recent experiments on trapped atomic gases [19–22] have stimu-
lated us to perform a detailed analysis on the ground state behavior
(such as the density distribution, the chemical potential, kinetic and
potential energy) of two dimensional electron gas confined in a po-
tential consisting of harmonic and Gaussian terms by using Thomas-
Fermi method. The potential have been taken in the form of

= +r r r y( ) exp( / )1
2

2 2 2 (where, and y are characteristic poten-
tial parameters) and the ground state properties of a fermionic system
have been investigated by altering the y parameters from 0.1 to 0.5 for
low, intermediate and high values of γ = 0.1, 0.5, 1.0. An iterative
numerical procedure is applied to solve Thomas-Fermi equation for
interacting electron gas. Here, we are particularly focused on the in-
fluence of the characteristic potential parameters and y on the ground
state properties of both non-interacting and interacting fermionic sys-
tems. The deviations of the results due to the Gaussian potential and
hence and y terms are also discussed by comparing the results with
those calculated for pure harmonic potential. Throughout the work, all
calculations are performed in atomic units, i.e., me = 1, = 1, e = 1.

2. Theory

For an electron gas confined in a two dimensional space, the density
of a system can be expressed as [33]

=
++ +

n r
h

p dp
b e

( ) 1 4
1p m V r r kT2 0 1 (( /2 ) ( ) ( ))/e2 (1)

Here, h is the Planck constant, T is the temperature, k is the Boltzmann
constant, µ is the chemical potential, V r( )e is the electron-electron (e-e)
interaction potential, r( ) is the confining potential, =b eµ kT/ is the
fugacity function respectively. Eq. (1) can be written in terms of Fermi-
Dirac integrals f b( )1 [33–35] as

= = +r f b bn( ) mkT ( ) mkT ln (1 )2 1 2 (2)

where, =b e µ r V r kT( ( ) ( ))/e . In the limit of low temperatures (T ∼ 0 K),
the reduced form of the Eq. (1) can be obtained by using Sommerfeld’s
lemma [35]

=r m µ r V rn( ) ( ( ) ( )).e2 (3)

The total number of electrons confined in a two dimensional space
can be clearly written in terms of density of electrons as

= n r r drN ( )2
r

0

0
(4)

To determine the ground state properties of the interacting confined
system, Eq. (3) can be related with Poisson equation

=V r n r( ) 2 ( )e
2

(5)

and Thomas-Fermi equation can be expressed as

=V r m µ r V r( ) 2 ( ( ) ( )).e e
2

2 (6)

Here is the dielectric constant of the material and 2=(1/
r) r r r( / ) ( / ). It is obvious that the density of electrons should

vanish at the boundaries due to the confinement. So it can be taken as
zero at the radius of the confined space r0(n(r0) = 0). We also assume
that electron-electron interaction is zero at this point (V (r )e 0 = 0) to
make the system as electrically neutral [29–30,37].

The ground state properties of non-interacting (ideal) system
(V (r )e 0 = 0) can be directly obtained by relating the boundary condi-
tions with Eq. (3) and determining the positive root of f (r) function for
r0 value for a constant number of particles

=µ r( )0 (7)

= =f n r r dr(r ) N ( )2 0
r

0 0

0
(8)

respectively. For a system confined with
= +r r r y( ) exp( / )1

2
2 2 2 (where, and y are confinement para-

meters.), the chemical potential and the radius of confinement can be
obtained from the equations written below
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2
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(9)
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According to our knowledge there is no analytical solution of
Thomas-Fermi equation for an interacting electron system confined in a
potential = +r r r y( ) exp( / )1

2
2 2 2 . So the solution will be realized

by solving Eqs. (4) and (6) with the iterative numerical method sum-
marized with some general steps;

(i) Start with an initial guess for the chemical potential: In this stage,
an arbitrary value for the chemical potential is determined. To
avoid the waste of time, the values can be chosen from analytically
known results in the literature [37].

(ii) Obtain a solution forV r( )e by substituting the chemical potential µ
in to Eq. (6).

(iii) Determine a new chemical potential value by inserting the solution
for V r( )e into Eq. (4).

(iv) Evaluation of the results: A tolerance value which stops the itera-
tion is determined and the chemical potentials are updated until
the difference of old and new generated values is smaller than the
prescribed tolerance value.

(v) Save the calculated values for µ V r, ( )e and n(r).

The same procedure can be used to evaluate the ground state
properties of the non-interacting case by takingV r( )e = 0. The accuracy
of the results can be checked by comparing them with the analytical
results obtained by using Eqs. (3), (9) and (10) for non-interacting case.
And also by taking = 0, we compare our results with those given for
harmonically confined ( =r m r( ) 1

2
2 2) interacting system [37].Within

the T-F approach, the other system properties such as the kinetic, en-
ergy (EK), the confining potential energy (E r( )) and Hartree energy
(EH) and in turn the total energy (ET) can be calculated via density
values [30,36],

=E (r) 2 r dr
r
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0
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