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A B S T R A C T

Widespread adoption of precision agriculture requires timely acquisition of low-cost, high quality soil and crop
yield maps. Integration of remotely sensed data and machine learning algorithms offers cost-and time-effective
approach for spatial prediction of soil properties and crop yield compared to conventional approaches. The
objectives of this study were to: (i) evaluate the role of remotely sensed images; (ii) compare the performance of
various machine learning algorithms; and (iii) identify the importance of remotely sensed image-derived vari-
ables, in spatial prediction of soil properties and corn yield. This study integrated field based data on five soil
properties (i.e., soil organic matter (SOM), cation exchange capacity (CEC), magnesium (Mg), potassium (K), and
pH) and yield monitor based corn yield data with multispectral aerial images and topographic data, both col-
lected in 2013, from seven fields at the Molly Caren Farm near London, Ohio. Digital elevation model data, at a
resolution of 1m, was used to derive topographic properties of the fields. Multispectral images collected at bare-
soil conditions, at a resolution 0.30m, were used to derive soil and vegetation indices. Models developed for
prediction of soil properties and corn yield using linear regression (LM) and five machine learning algorithms
(i.e., Random Forest (RF); Neural Network (NN); Support Vector Machine (SVM) with radial and linear kernel
functions; Gradient Boosting Model (GBM); and Cubist (CU)) were evaluated in terms of coefficient of de-
termination (R2) and root mean square error (RMSE). Machine learning algorithms were found to outperform LM
algorithm for most of the times with a higher R2 and lower RMSE. Based on models for seven fields, on average,
NN provided the highest accuracy for SOM (R2= 0.64, RMSE=0.44) and CEC (R2= 0.67, RMSE=2.35); SVM
for K (R2= 0.21, RMSE=0.49) and Mg (R2= 0.22, RMSE=4.57); and GBM for pH (R2= 0.15, RMSE=0.62).
For corn yield, RF consistently outperformed other models and provided higher accuracy (R2= 0.53,
RMSE=0.97). Soil and vegetation indices based on bare-soil imagery played a more significant role in de-
monstrating in-field variability of corn yield and soil properties than topographic variables. The accuracy of the
models developed for prediction of soil properties and corn yield observed in this study suggested that the
approach of integrating remotely sensed data and machine learning algorithms are promising for mapping soil
properties and corn yield at a local scale, which can be useful in locating areas of potential concerns and im-
plementing site-specific farming practices.

1. Introduction

Accurate and detailed information on soil properties and crop
health is essential for optimization of farm management practices for
sustainable production of agricultural goods and services (Souza et al.,
2016; Yao et al., 2016), as well as for environmental modeling, and
environmental risk assessment and management. High resolution maps
of soil properties and crop yields enable producers and the agricultural
community to identify in-field variability in soil and crop health and

target areas within the field for soil fertility interventions, improved
crop productivity, and better economic outcomes.

Traditional approaches for mapping soil properties and crop yield
have mostly relied on field surveys and the use of costly equipment. Soil
sampling and laboratory analyses are conducted for evaluating soil
health, and harvester-mounted yield monitors are used for under-
standing the spatial variability in crop yield. These approaches however
are time consuming and expensive, especially when mapping needs to
be done at regional, national, and global scales (Mulder et al., 2011;
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Yang et al., 2014). Furthermore, these approaches have several lim-
itations. For example, yield monitor based data can only be collected at
harvest and, thus, cannot be used for in-season crop management. Also,
these data are spatially coarse and fail to capture in-field variability in
soil and crop health (Souza et al., 2016).

Remotely sensed images have the potential to overcome the lim-
itations of traditional approaches and improve the spatial coverage of
soil and crop yield data (Peng et al., 2015; Stevens et al., 2013; Yao
et al., 2016). Studies have demonstrated that many soil properties can
be estimated by integrating georeferenced field collected soil and crop
data with spectral properties of soil acquired by sensors onboard sa-
tellite and aircrafts. Dobos et al. (2001) found the Advanced Very High
Resolution Radiometer (AVHRR) satellite data and DEM derived terrain
variables to be powerful in characterizing soil-forming environments
and delineation of soil patterns on a regional scale. Scudiero et al.
(2014) found multi-year spectral reflectance data from the Landsat to
be a reliable indicator of soil salinity in the western San Joaquin Valley
in California, USA. Several studies have also been conducted focusing
on crop yield mapping by integrating remotely sensed images acquired
from satellite (Lobell et al., 2015), aircraft (Yang et al., 2014), and
unmanned aerial vehicles (Geipel et al., 2014; Shi et al., 2016).

Despite prior efforts, further exploration on the application of re-
motely sensed data for mapping of soil properties and crop yield is
needed. The success in prediction and mapping of soil properties, and
crop health and yield using remotely sensed data to a large extent de-
pends on the availability, quality, and timing of remotely sensed data
collection (Blasch et al., 2015), as well as the approaches used for
model development (Forkuor et al., 2017; Morellos et al., 2016). Prior
studies have mostly focused on estimating crop yield and soil properties
at regional scales rather than for individual fields (Lobell et al., 2015).
These studies used satellite acquired remotely sensed images with
coarse spatial resolution. Mapping of soil properties and crop yield at
coarse resolution is of limited use for resource assessment and man-
agement at a field scale; whereas, maps at high resolution can help the
agricultural and environmental community to cost-effectively detect
and characterize the extent of soil and crop health issues. This in-
formation can be used for prescription-based farming that help improve
economic outcome and environmental footprints associated with agri-
cultural practices.

A linear regression algorithm is the most commonly used approach
to estimate crop yield and soil properties (Geipel et al., 2014; Lobell
et al., 2015). However, it has limitations in handling non-linear re-
lationships between response and predictor variables that usually exist
in heterogeneous agricultural landscapes. There are several machine
learning algorithms that can overcome this limitation, and provide
better prediction of soil variables and crop yield. However, comparisons
of the traditional linear regression algorithm to machine learning al-
gorithms for prediction of soil properties and crop yield are limited. In
addition to understanding the performance of various models in map-
ping soil properties and crop yield, there is a need to identify the re-
lative importance of variables for enhancing the predictive ability of the
models.

The objectives of this study were to: (i) examine the role of remotely
sensed images; (ii) evaluate the performance of linear regression and
machine learning algorithms; and (iii) identify the importance of re-
motely sensed image-derived variables, for prediction and mapping of
soil properties and corn yield. Seven statistical models were developed
for predicting corn yield and soil properties. Soil properties examined in
this study included soil organic matter (SOM), cation exchange capacity
(CEC), potassium (K), magnesium (K), and pH. Prior studies (Forkuor
et al., 2017; Morellos et al., 2016) have used remotely sensed data for
mapping of soil properties; however, this is to our knowledge the first
evaluation of remotely sensed images of bare soil surface at a spatial
resolution<1m from multiple fields for prediction and mapping of
both soil properties and corn yield.

2. Materials and methods

2.1. Study area

Fields examined in this study are located in the northwest part
(83°26′14.3″–83°26′49.24″W, 39°56′37.82″–39°57′28.7″N) of Madison
County, Ohio, USA. The dominant soil types in these fields are
Ochraqualfs (Crosby-Lewisburg Complex), Argiaquolls (Kokomo Silty
Clay Loam, Westland silty clay loam), and Hapludalfs (Miamian Silt
Loam, Eldean silt loam, Thackery variant silt loam) (Table 1). These
fields are gently rolling, with the mean slope ranging from 4.35 to
9.26%. The average elevation of the fields is 311m. The mean annual
rainfall (1981–2016) is 998mm with approximately 58% of annual
rainfall occurring between April and September. The mean annual
temperature is 10.9 °C, with daily temperatures ranging from −6.7
(minimum) to 29.2 °C (maximum).

A strong spatial variability in soil properties was observed in the
study area. Soil properties were characterized by large range and high
standard deviation, with SOM in the range of 1.2–4.9 (%), CEC of
6–27.3 (meq/100 g), K of 1.2–5.9 (%), Mg of 10.2–36.7 (%), and pH of
5–78 (Table 2).

2.2. Data

2.2.1. Soil and crop data
A total of 200 soil samples were collected from seven bare fields

(Table 1) in October 1, 2013. In each field, samples were taken at a
depth of 18 cm on 1-acre intervals. The samples were air-dried at 49 °C
(120 °F) for 24 h, sieved, and sent to the Spectrum Analytic lab (Spec-
trum Analytic, 2017) for soil analyses. As field 12D has very different
soil map units compared to six other fields (Table 1), soil samples were
classified into two dominant soil orders (Alfisols and Mollisols), and a
“group” was introduced as an independent variable for model devel-
opment.

Corn yield data were available for only one field (i.e.,12D), and
thus, the models for corn yield prediction were focused on this field
only. Corn yield data were recorded by a John Deere yield monitoring
system during harvest. The yield monitor was calibrated before and

Table 1
Basic characteristics of the fields studied, including field size, slope, dominant soil map unit, dominant soil order, number of soil samples, and field management
practices.

Field Size (ha) Slope (%) Soil map unit Dominant soil order Sample number Tillage Crop rotation

1B 11 4.37 Ochraqualfs (40.7%), Argiaquolls (31%), Epiaqualfs (18%), Argiudolls (10.3%) Alfisols 27 NT C-C-S
1C 5.3 5.86 Ochraqualfs (74%), Argiaquolls (26%) Alfisols 17 CT C-S-C
1D 6.5 4.35 Ochraqualfs (94.8%), Argiaquolls (5.2%) Alfisols 20 NT C-S-C
9A 13.3 5.7 Ochraqualfs (58%), Argiaquolls (42%) Alfisols 39 CT C-S-C
12D 17.5 4.98 Argiaquolls (46%), Hapludalfs (27.9%); Ochraqualfs (23.8%) Mollisols 49 CT W-S-C
MISD 12 9.26 Ochraqualfs (82.5%), Argiaquolls (18.5%) Alfisols 36 CT S-W-C
PENIN 3.8 9.6 Ochraqualfs (98%) Alfisols 12 NT C-C-S

Tillage: NT – No Till; CT – conventional tillage (i.e., field cultivator was used prior to planting the crop). Crop Rotation: C- Corn; S- Soybean; W-Wheat.
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