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A B S T R A C T

The ultimate buckling strength of axially loaded cold-formed lipped channel columns is studied. Variations of
boundary conditions and eccentricities of the applied load are considered. The strength is calculated by a
geometrically and materially nonlinear FEM analysis. Numerical study is carried out for two columns previously
analysed under fixed boundary conditions and centroidal load. Geometrical imperfections in the shapes of ei-
genmodes of the corresponding linearized buckling problem are assumed. For comparing the imperfections their
sizes are set to a uniform level of an energy measure. Particularly the worst eigenmode imperfection is de-
termined for each studied design case. By the corresponding lowest collapse loads the effects of varying
boundary conditions and load eccentricities on the ultimate buckling strength of the columns are shown.

1. Introduction

Generally, the behaviour and ultimate buckling strength of thin-
walled structures and structural elements is significantly influenced by
imperfections. Particularly, the geometrical imperfections considered as
deviations from the initially perfect mid-surface geometry are of main
concern. Both their shapes and sizes are of importance. Because of the
lack of representative number of measured data, theoretical imperfec-
tion shapes are employed in computational assessment of the ultimate
buckling strength. Usually, the eigenmodes of elastic buckling problem
as well as periodic shapes described by trigonometric functions or
combinations of thereof are applied.

For comparison of imperfections aiming at finding the most un-
favourable one, a measure of their sizes has to be adopted. Commonly
utilised amplitude is a local measure not showing the level of overall
deformations. This point is partly taken into account by differentiating
few basic modes often relating their amplitudes to the standards of
execution tolerances or measurements statistics. In cold-formed steel
members mostly three basic modes: local, distortional and global are
considered. Nevertheless the problem of comparing slightly and heavily
deformed shapes remains, e.g., modes of few as well as of numerous
local half waves of equal amplitudes are assumed acceptable for com-
parison. Another problem with the local measure arises when combi-
nations of the basic modes are sought. One may ask what should be the
amplitude of the combined mode when individual components possess

different amplitudes. Moreover, since amplitude can not be used as a
unique measure of imperfections it may obstruct advancing to prob-
abilistic approaches.

Selection of influential imperfection shapes by which the worst
imperfection can be determined is a challenging task. The eigenmodes
of the related eigenvalue problem, known as incipient shapes of the
nonlinear solutions bifurcating from the idealised perfect state at the
corresponding buckling loads, are naturally employed. Distinct dis-
tribution of buckling loads suggests that the first or second eigenmode
may be decisive. When higher buckling loads are situated near the
critical buckling load, the group of imperfection modes of potential
importance can increase significantly. Nevertheless, since the eigen-
value problem relates to small nonlinear solutions such observations
should be regarded as indications only. One can recall the well known
possibility of occurrences of smooth, bifurcational or snap through
changes of nonlinear solutions. Despite of this, thoughtful utilisation of
indications derived from the eigenvalue solutions may prove helpful.

Rapid progress in the use of geometrically and materially nonlinear
FEM simulations with imperfections (GMNIA) for the design of struc-
tures, see e.g. [1–4], escalated the demand for guidance on inclusion of
imperfections. The informative Annex C “Finite Element Methods of
Analysis (FEM)” of EN 1993-1-5: 2006 is known as the first attempt to
codify implementation of imperfections in the nonlinear FEM analysis
for design purposes. The geometrical imperfections are based on ei-
genmodes scaled to 80% of fabrication tolerances. Choosing any one as
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a leading imperfection, possible accompanying modes should be re-
duced to 70% of the former. For achieving the worst case, one im-
perfection a time should be tried as leading. Likewise accompanying
modes (one or several) are included.

The current evolution of Structural Eurocodes (CEN/TC 250) aims
at the development of standardized design guidance for computational
FEM modelling of structures, which should provide more economical
design without reducing target levels of safety. It should be based on
consistent allowances for structural imperfections and specification of
geometrical execution tolerances with regard to buckling strength of
columns, frames, plated structures and shells. A contribution to the
discussion on achievement of this goal was published in our previous
paper [5]. The suggested approach is based on an overall — energy
measure of geometrical imperfections. It was applied on cold-formed
lipped channel columns of three cross-sectional geometries and several
column lengths. In GMNIA computational implementation of FEM fixed
boundary conditions and centroidal axial load were adopted.

The concept of energy measure (EM) of geometrical imperfections
was published in [6]. The measure derives from the elastic strain energy
hypothetically required to deform a perfect structural element into the
considered imperfect shape [7]. Defining EM by the square root of the
energy means its equivalence to the norm in the functional space of
variational solutions of elastic eigenvalue buckling problems. The norm
is related to a scalar product by which the eigenmodes form an ortho-
gonal system which is complete in that space. The combinations of ei-
genmodes simply follow the Pythagoras triangle rule. A minimization of
the potential energy of an abstract buckling problem (described in
terms of operators in that space) perturbed by small initial imperfec-
tions of a constant energy measure (norm) was performed in [6]. The
minimization was regular for loads below the critical buckling load
providing overall and initial deflections in the shapes of buckling modes
as stationary points of this constrained minimization problem. That
point of view corroborates the use of eigenmodes as characteristic im-
perfection shapes, however under the energy measure normalization.

The energy measure of eigenmode imperfections is another quantity
derived from the solution of eigenvalue problem which can facilitate
the choice of influential eigenmodes [5,8]. Normalizing the eigenmodes
by the unit maximum displacement component (co-ordinate shift from
the perfect state) realized in NASTRAN, ABAQUS, ANSYS or COSMOS/
M, the corresponding EM value of an eigenmode reflects the amount of
imaginary strain energy stored in that mode. The lesser is the energy
necessary for reaching the unit magnitude of an eigenmode, the greater
is buckling deformability of that mode. Normalizing the eigenmodes by
the energy measure, the greater buckling deformability of a mode is
indicated by its higher amplitude (the maximum of co-ordinate shifts).
Adopting normalization of imperfections by the energy measure EM
[8], the amplitudes of normalized eigenmodes are used as a compara-
tive parameter of their buckling deformability.

For description of the approach suggested in [8] it is proper to
consider equalities defining the energy measure of eigenmodes in FEM
approximation:

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

EM φ φ K φ λ φ K φ( ) 1
2

1
2

.i i
T

e i i i
T

g i

1/2 1/2

(1)

Ke and Kg are the elastic stiffness and geometric matrices, respec-
tively. φi denotes the i-th eigenmode and λi represents its buckling load
Pcri. Both the norm and the scalar product are determined by the stiff-
ness matrix Ke. The right-hand side equality of Eq. (1) derives from the
i-th solution of the eigenvalue problem showing that the strain energy
of φi is equal to one half the work of external forces. Thereby, the
quadratic form generated by the geometric matrix Kg represents the
axial shortening related to the i-th eigenmode, i.e. characterizes the
axial deformability of that mode. One would naturally expect that the
axial deformability decreases with the modes order number, i.e. the
higher the buckling load, the greater the axial stiffness of the

corresponding mode. This exactly happens when normalizing the ei-
genmodes by the energy measure, as shows Eq. (1) for constant EM [8].
When normalizing the eigenmodes by amplitude this feature is not
observed. The buckling loads are used as a discrete parameter of axial
stiffness of the corresponding modes.

The procedure facilitating the choice of influential modes starts with
normalization of geometrical imperfections by the energy measure [8].
A basic level of EM normalization is adjusted by reaching the unit
maximum amplitude (determined in terms of co-ordinate translations)
within the considered set of eigenmodes. A graphical presentation
showing buckling loads along with the amplitudes of the normalized
eigenmodes is required. The heavily deformed modes possessing small
amplitudes generally show a branch of values decreasing with their
order number Fig. 3 [5] and Figs. 3–5, etc. Eigenmodes of great axial
stiffness (corresponding to high buckling loads) and little buckling de-
formability (of lower amplitudes) were observed as not influential
[5,8]. Modes of lower or moderate axial stiffness (close and not too far
above the critical buckling load) as well as those of significant buckling
deformability (of upper cross-sectional amplitudes) are candidates for
the most influential eigenmode imperfection to be checked by collapse
loads calculations. The power of the axial stiffness parameter also de-
pends on the EM level at which the eigenmode imperfections are
compared. Decrease of the level increases significance of the axial de-
formability parameter. For example at minute amplitudes (< 0.01mm)
the first eigenmode shape was the decisive imperfection of a lipped
channel column having thickness of 1.5mm [8]. Increase of the EM
level enhances significance of the buckling deformability parameter as
showed failure load computations at moderate and tolerances limited
EM levels, i.e. higher eigenmodes may become influential, cf. Fig. 10
and 17 [5].

In earlier GMNIA studies on post-buckling of plates unexpected
strength values were obtained using eigenmode imperfections of equal
amplitudes. Dow and Smith [9] dealing with rectangular plates of as-
pect ratio 4 subjected to longitudinal compression found that the
strength of plates with initial deflections of 4, 5 and 6 half-waves de-
creased with the number of half-waves. Similar results were already
reported in [10]. In [11] the compressive strength of rectangular plates
of aspect ratio 3 and three slenderness ratios was studied considering
theoretical imperfections and measurements of ships plating distor-
tions. Using eigenmode imperfections with amplitudes within the range
derived from measurements consistent results with the aforementioned
were obtained. However, the strength values for imperfections of
3–5 half-waves were significantly below the cloud of plates capacities
obtained for measured imperfections. When adopting normalization by
the energy measure within the EM ranges of measurements, the scatters
of strength values corresponding to theoretical and measured im-
perfections reasonably correlated.

The present paper extends the investigation of ultimate buckling
strength of two cold-formed lipped channel columns carried out in [5]
by releasing fixed boundary conditions. Rotations of the loaded end
cross-section about the minor and major axis as well as about the
longitudinal axis are allowed. Warping of end-cross sections is pre-
vented. Further, eccentric load applications in the points of the major or
minor axis as well as a combined eccentricity are assumed. For mod-
elling the outlined boundary and load conditions, stiff flat platens are
attached at the end cross-sections of the channel. The main goal is to
show performance of the procedure for selection of the most influential
eigenmodes in new types of design cases. Focus is placed on finding the
worst eigenmode imperfection under moderate initial distortion level.
Combination of eigenmodes or adjustment of imperfections sizes by
execution tolerances is not addressed here.

The energy measure is also used for comparison of ultimate buckling
strength values at different boundary conditions and load eccentricities.
Assuming that the characteristics of initial deformations are derived
from built in members before operation, the collapse loads of an in-
dividual column are calculated for imperfections having the same
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