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a b s t r a c t 

In this paper, a computationally efficient coherent detection and parameter estimation algorithm via sym- 

metric autocorrelation function (SAF) and scaled Fourier transform (i.e., SAF-SFT) is proposed, involving 

range cell migration (RCM) and Doppler spread (DS) within the coherent integration (CI) time. In partic- 

ular, the first SAF and SFT operations are applied to achieve the range and velocity estimations after the 

generalized keystone transform. With the estimations, the remaining RCM induced by target’s velocity 

could be removed and the target signal could be extracted along the range cell. Then the second SAF and 

SFT operations are performed on the extracted signal, where the target energy could be coherent inte- 

grated and the acceleration estimation can be obtained. Cross term of SAF-SFT is also analyzed and its 

characteristic indicates the applicability in the scenario of multi-targets. Detailed comparisons of SAF-SFT 

with several typical algorithms with respect to computational cost, detection probability and parameter 

estimation ability show that the SAF-SFT could strike a balance between computational cost and detec- 

tion probability as well as the estimation performance. Simulation results and real test experiment are 

given to verify the SAF-SFT based approach. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Effective detection and parameter estimation of maneuvering 

targets is a challenging problem in the field of radar [1–4] . With 

the help of long-time coherent integration (CI) technique, the radar 

detection and estimation performance of maneuvering targets can 

be significantly improved. Nevertheless, the high speed and accel- 

eration motion of maneuvering target will bring about range cell 

migration (RCM) and Doppler spread (DS) effects within the CI 

time [4–7] . Then the integration gain and target detection ability 

of traditional coherent integration method will be reduced sharply 

[8–14] . 

As to the RCM correction, some popular methods have been in- 

troduced, such as sequence reversing transform (SRT) [15,16] , key- 

stone transform (KT) [17–20] , axis rotation moving target detection 

(AR-MTD) [21] , Radon-Fourier transform (RFT) [22] , adjacent cross 

correlation function (ACCF) [23,24] , scaled inverse fourier trans- 

form (SIFT) [25] , and frequency-domain deramp-keystone trans- 

form (FDDKT) [26] . For example, SRT could remove the RCM via 

the correlation operation between the received signal and its re- 

versed conjugate signal. KT is able to correct the RCM via rescaling 

in the time-frequency domain. AR-MTD and RFT could eliminate 

∗ Corresponding author. 

E-mail address: xiaolongliuestc@gmail.com (X. Li). 

the RCM with the two-dimensional searching process. ACCF can re- 

move the RCM with the help of adjacent cross correlation opera- 

tion. Nevertheless, the ACCF-based algorithm needs a high signal- 

to-noise ratio (SNR) input and will suffer detection performance 

loss when the SNR of target’s echo reduced. SRT requires a strictly 

demand on the time symmetry property, which limits its applica- 

tion in the radar field. Moreover, KT, AR-MTD, RFT, SIFT and FDDKT 

could not remove the DS effect induced by target’s acceleration. 

In order to deal with the DS effect, some popular methods, 

such as Lv’s distribution (LVD) [27,28] , fractional Fourier transform 

(FRFT) [29] and polynomial Fourier transform (PFT) based methods 

[30] , are introduced to eliminate the DS and obtain the focused 

result of target energy. Compared with the PFT and FRFT, LVD 

can obtain better integration performance and detection ability of 

weak target’s signal in the centroid frequency chirp rate (CFCR) do- 

main. Unfortunately, these three algorithms can only eliminate the 

DS effect and can not deal with the RCM effect. For the high speed 

target with acceleration motion, the RCM and DS effects will oc- 

cur simultaneously and then the methods mentioned above would 

become invalid. 

In this regard, Xing et al. combined the KT and minimum en- 

tropy (i.e., KTME) to remove the RCM and DS effects [31] . Unfor- 

tunately, this method needs high SNR input due to the minimum- 

entropy based operation. In [32] , Tian et al. introduced a CI ap- 

proach combing generalized keystone transform and RFT (GKT- 
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RFT). Nevertheless, the RCM correction performance of this algo- 

rithm may be affected by the previous DS compensation process. 

Thus, in [33] and [34] , the Radon-Lv’s distribution (RLVD) and 

Radon-fractional Fourier transform (RFRFT) are respectively pre- 

sented, which can simultaneously remove the RCM and DS effects. 

However, the multi-dimension searching process of RLVD [33] and 

RFRFT [34] make them are of huge computational burden. To re- 

duce the computational cost, Sun. et al. introduced an approach 

based on KT and matched filter process (i.e., KTMFP) for maneuver- 

ing target detection [35] . Unfortunately, the computational burden 

of KTMFP is still huge. 

In this paper, a computationally-efficient radar maneuvering 

target detection and motion parameter estimation algorithm is 

proposed based on the symmetric autocorrelation function (SAF) 

and scaled Fourier transform (SFT), i.e., SAF-SFT. This algorithm is 

coherent and could totally eliminate the RCM and DS without the 

parameter-searching process. The computational complexity, detec- 

tion ability, and estimation performance are analyzed and com- 

pared with several typical algorithms, which leads us to conclude 

that the proposed SAF-SFT algorithm could strike a balance among 

the computational burden, detection probability and motion pa- 

rameter estimation ability. Moreover, the cross term characteristic 

of SAF-SFT under multi-target scene is also analyzed and shows the 

applicability of the proposed algorithm in the scenario of multiple 

targets. Finally, experiments with the real measured radar data are 

conducted to verify the proposed algorithm. 

The paper is organized as follows. Signal model is given in 

Section 2 . The SAF-SFT based algorithm is described in Section 3 . 

The cross terms analysis is placed in Section 4 . Computational cost 

analysis is provided in Section 5 . Simulation examples and real 

data processing are given in Section 6 followed by conclusions. 

2. Signal model 

Assume that the radar transmits the linear-frequency modu- 

lated signal [10,13,21,34] , i.e., 

s trans ( ̂ t ) = rect 

(
ˆ t 

T p 

)
exp 

(
jπμˆ t 2 

)
exp ( j2 π f c ̂  t ) , (1) 

where 

rect ( x ) = 

{
1 , | x | ≤ 1 

2 

0 , | x | > 

1 
2 

μ, T p , ˆ t and f c denote the frequency modulated rate, pulse dura- 

tion, fast time and carrier frequency, respectively. 

Without loss of generality, the signal model of the i th 

(i = 1 , 2 , · · ·, K) target is established for simplicity, where the in- 

stantaneous slant range R i ( t m 

) of the i th target satisfies [34] 

R i (t m 

) = R 0 i + v i t m 

+ a i t 
2 
m 

, (2) 

where t m 

= mT (m = 0 , · · ·, N) is the slow time, N and T are re- 

spectively the pulse number and pulse repetition time. a i , v i and 

R 0 i are i th target’s radial acceleration, velocity and initial slant 

range, respectively. 

The received signal of the i th target after pulse compression 

(PC) could be formulated as [34] 

s ( ̂ t , t m 

) = A 1 i sinc 

[
B 

(
ˆ t − 2 ( R 0 i + v i t m 

+ a i t 
2 
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c 

)]

× exp 

(
− j4 π
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+ a i t 
2 
m 

λ

)
, (3) 

where λ represents the wavelength, i.e., 

λ = c/ f c , (4) 

c , B and A 1 i are respectively the speed of light, bandwidth and am- 

plitude after PC. 

Because of target’s high speed and radar’s low pulse repetition 

frequency (PRF), Doppler ambiguity would occur. As a result, the 

target’s velocity could be expressed as 

v i = F i v a + v 0 i , (5) 

where v a represents the blind velocity, i.e., 

v a = λ f p / 2 , (6) 

v 0 i is defined as the unambiguous velocity and it satisfies v 0 ∈ [ 
− λ f p 

4 , 
λ f p 

4 

] 
, F i denotes the fold factor (also called as ambiguous 

number) of the i th target, f p is the PRF. 

Instituting (5) into (3) and considering that 2 π f p F i t m 

is an inte- 

gral multiple of 2 π , we have 

s ( ̂ t , t m 

) = A 1 i sinc 

[
B 
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c 

)]

× exp 

(
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)
. (7) 

Perform the Fourier transform (FT) on (7) along the fast time 

axis, we have 

S( f r , t m 

) = A 2 i rect 

(
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− j4 π f r 

F i v a t m 

c 

)
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− j4 π( f c + f r ) 
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2 
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) 

c 

]
, (8) 

where A 2 i denotes the signal’s amplitude after FT, i.e., 

A 2 i = A 1 i /B. (9) 

Eq. (8) shows that target’s acceleration and velocity are all cou- 

pled with f r , which will result in DS and RCM effect within the CI 

time. 

3. Coherent integration and parameter estimation 

3.1. Range and velocity estimation 

First of all, the generalized keystone transform (GKT) is used to 

correct the RCM caused by target’s acceleration, which performs 

scaling as follows: 

t m 

= [ f c / ( f r + f c )] 1 / 2 u m 

. (10) 

Apply the GKT on (8) yields 
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Take the first-order Taylor series expansion on f r [ f c / ( f c + 

f r )] 1 / 2 and (1 + f r / f c ) 
1 / 2 , we have 

f r [ f c / ( f c + f r )] 1 / 2 ≈ f r , (12) 

(1 + f r / f c ) 1 / 2 ≈ 1 + f r / (2 f c ) . (13) 
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