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a b s t r a c t 

In this paper, a new strategy referred to as the nonlinear second-order (NSO) filter is presented and used 

for estimation of linear and nonlinear systems in the presence of uncertainties. Similar to the popular 

Kalman filter estimation strategy, the proposed strategy is model-based and formulated as a predictor- 

corrector. The NSO filter is based on variable structure theory that utilizes a switching term and gain 

that ensures some level of estimation stability. It offers improvements in terms of robustness to mod- 

eling uncertainties and errors. The proof of stability is derived based on Lyapunov that demonstrates 

convergence of estimates towards the true state values. The proposed filtering strategy is based on a 

second-order Markov process that utilizes information from the current and past two time steps. An ex- 

perimental system was setup and characterized in order to demonstrate the proposed filtering strategy’s 

performance. The strategy was compared with the popular Kalman filter (and its nonlinear form) and 

the smooth variable structure filter (SVSF). Experimental results demonstrate that the proposed nonlin- 

ear second-order filter provides improvements in terms of state estimation accuracy and robustness to 

modeling uncertainties and external disturbances. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Estimation is the process of extracting true state and param- 

eter values from systems in the presence of noisy measurements, 

modeling uncertainties, and unwanted disturbances. This task aims 

to provide optimal estimates in terms of minimal estimation er- 

ror, which is defined as the difference between the estimated and 

actual state values. Inherent to the estimation process is system 

and measurement noise, external disturbances, and uncertainties–

all of which can be caused by sensors, instruments, or the envi- 

ronment. In order to overcome these issues, model-based estima- 

tion and filtering strategies are utilized to monitor and control en- 

gineering systems. In model-based methods, a probability density 

function (PDF) is calculated recursively, and is based on the state 

estimates. Information on the state mean and state covariance is 

contained within the PDF, and can be used to provide state es- 

timates. Model-based strategies are recursive, and consist of two 

stages: predict and update. In the first stage, the system model 

is used to estimate (or predict) the state values at the next time 

step. The update stage, as the name suggests, refines the predicted 

state estimates based on system measurements. The most popu- 

∗ Corresponding author. 

E-mail address: gadsden@uoguelph.ca (S.A. Gadsden). 

lar model-based method used for linear estimation problems is 

the well-known Kalman filter (KF) [1] . The KF assumes that the 

estimation problem is linear, the system is known, and the noise 

is zero-mean and Gaussian distributed. For general nonlinear and 

non-Gaussian systems, several strategies have been proposed: lin- 

earization (e.g., the extended Kalman filter or EKF [2,3] ), and PDF 

approximation (e.g., the unscented Kalman filter or UKF [3] , the 

cubature Kalman filter or CKF [4] ). It has been demonstrated that 

the CKF is merely a special case of the UKF [4] . Due to improve- 

ments in computing power and reductions in cost, particle filters 

(PFs) have grown in popularity [5] . Similar to the UKF, the PF uses 

a large set of weighted particles that approximate the state PDF 

[3,6] . 

One of the main issues with the KF is that the estimation per- 

formance may degrade in the presence of modeling and parame- 

ter uncertainties. To overcome this issue, robust state estimation 

techniques are implemented, such as minimax estimators, worst- 

case, or set-membership state estimators [7,8] . From a statistical 

standpoint, the minimax estimators deal with uncertainties that 

are uniformly distributed within given bounds. In the case of el- 

lipsoidal bounding sets, these estimators coincide with the KF for 

linear systems. Interestingly, there also exists minimax estimators 

where the uncertainty is mathematically expressed using entropy- 

like indexes [9] . Based on propagation of uncertainties, a family of 
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Nomenclature 

A Linear state matrix 

A E Piston area 

B Linear control matrix 

B E Load friction 

D P Pump displacement 

H Linear measurement matrix 

K Filter’s gain 

L Leakage coefficient 

M Load mass 

P State error covariance matrix 

Q Process noise covariance matrix 

Q e Leakage flow rate 

Q L0 Flow rate offset 

R Measurement noise covariance matrix 

S Vector of sliding variables 

T Sampling rate 

V 0 Initial cylinder volume 

a 1 ,a 2 ,a 3 Friction coefficients 

e Estimation error 

f Nonlinear state model 

k Sample time 

s Sliding mode variable 

u Control variable 

v Measurement noise 

w Process noise 

x State vector 

z Measurement vector 

βe Effective bulk modulus 

γ Convergence rate 

ε Upper bound 

ω P Motor rotational velocity 

ψ Smoothing boundary layer 
ˆ � Estimated quantity 

�+ Pseudo-inverse operator 

robust Kalman filter may be derived [10] . Other robust strategies 

include the so-called robust KF [11,12] and the H ∞ filter [13] . The 

robust KF was used for systems with bounded modeling uncertain- 

ties such that an upper bound of the mean square estimation er- 

ror (MSE) is minimized at each step [11] . Considerable research has 

been performed on the design of robust state estimation methods 

for dynamic systems with bounded uncertainties, such as mini- 

max estimators [14] , worst-case [7,15] , or set-membership state es- 

timators [8] . Zames [13] created the H ∞ method by removing the 

necessity of a perfect model or complete knowledge of the input 

statistics. The H ∞ theory was designed by tracking the magnitude 

of the ‘energy’ of a signal for the worst possible scenario in terms 

of noise levels and modeling uncertainties. 

In 2007, an initial form of the smooth variable structure filter 

(SVSF) was introduced based on variable structure theory intro- 

duced in the 1970s [16,17] . Similar to the KF method, the SVSF 

[17] is a predictor-corrector strategy. However, the SVSF formula- 

tion is unique since the gain is derived based on a discontinuous 

corrective gain. This gain bounds state estimates to within a re- 

gion of the true state trajectory, improving stability of estimates 

and robustness to external disturbances [17] . The discontinuous 

corrective action provided by the SVSF gain has demonstrated ro- 

bustness to bounded modeling uncertainties [18,19] . A smoothing 

term (e.g., saturation function) is used to suppress or smooth chat- 

ter caused by the SVSF gain [20] . However, the robustness of the 

method comes at a trade-off; the SVSF introduced in 2007 is a 

sub-optimal filter [21,22] . Gadsden extended the SVSF by deriving 

a state error covariance term for it, and using the term to obtain 

an optimal smoothing boundary layer [18,19] . Results demonstrate 

improved state estimation while maintaining robustness to model- 

ing uncertainties and disturbances [18,19,23] . Afshari et al. have re- 

searched on the design and application of hydraulic and pneumatic 

actuation systems. They implemented a number of techniques to 

analyze the dynamic behavior of such systems [24,25] . Moreover, 

Afshari et al. investigated the performance of popular robust esti- 

mation methods with applications to fault detection and diagnosis 

[26–29] , maneuver vehicle tracking [30–32] , and energy manage- 

ment systems [33,34] . 

This paper is motivated by state estimation problems for sys- 

tems with modeling uncertainties or errors, such as in fault oper- 

ating conditions. Since a higher-order version of the SVSF is de- 

rived, it is expected that the proposed method will yield a more 

accurate solution to the estimation problem in terms of state er- 

ror. However, the higher-order accuracy comes at a trade-off with 

computational complexity and time. Since computers are being ex- 

tremely fast and relatively cheap, the issue of computational power 

requirements is less important than a decade ago. During system 

faults, the mathematical model of the system used by the filter de- 

viates from the true model (e.g., normal conditions). In most cases 

it is extremely difficult (or impossible) to identify all of the pos- 

sible operating and fault conditions. The proposed NSO filter, de- 

scribed in Section 2 , is able to overcome this issue by generating 

state estimates for systems subjected to ‘soft’ fault conditions. The 

stability of the proposed filter is proven mathematically. Different 

measurement cases (full and reduced) for the proposed filter are 

described in Sections 3 and 4 , respectively. An experimental setup 

was used to verify and compare the proposed NSO filter with the 

popular KF and the EKF. As described in Section 5 , two cases were 

studied: linear system with only one measured state, and non- 

linear system with full measurements. The paper is concluded in 

Section 6 . 

2. NSO filtering strategy 

The proposed NSO filter is based on the SVSF, whereby a 

second-order formulation of the gain is implemented [17] . The 

strategy can be formulated to work with linear and nonlinear sys- 

tems. However, for nonlinear systems without full measurements, 

the nonlinearities need to be linearized or approximated. A tech- 

nique is presented in [17] to obtain the gain for unmeasurable 

states of a nonlinear system without the need for linearization. The 

proposed filter utilizes a prediction and update stage (described in 

this section). To formulate the NSO filter, consider a nonlinear sys- 

tem represented by a discrete state model as follows: 

x k +1 = F ( x k , u k , w k ) , (1) 

where F : R 

2 n + p → R 

n is the nonlinear state model, x k ∈ R 

n ×1 is 

the state vector, u k ∈ R 

p×1 is the control vector, and w k ∈ R 

n ×1 is 

the process noise (modeling uncertainties) vector. The measure- 

ment model is assumed to be linear or at least piece-wise linear 

such that: 

z k = H x k + v k , (2) 

where z k ∈ R 

m ×1 is the measurement vector, v k ∈ R 

m ×1 is the mea- 

surement noise, and H ∈ R 

m ×n is the measurement matrix. 

Assumption 1: The control vector u k is assumed known and 

norm-bounded. Moreover, vectors w k and v k are assumed to be 

unknown but norm-bounded, and with a zero mean. 

Assumption 2: It is assumed that the system with Eqs. (1) and 

(2) is smooth and with continuous partial derivatives. 

Based on these assumptions, consider the following steps for 

the NSO filter. 
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