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h i g h l i g h t s

• A family of evolving self-similar networks is constructed.
• Our self-similar model is rigorously deterministic.
• The fractality exists in our self-similar model.
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a b s t r a c t

Self-similarity plays an important role in the study of fractal networks. In this paper, we
construct a class of self-similar evolving networks by replacing one node with an initial
graph. Our substitution rule is based on the directed graph and then the corresponding
networks are deterministic. Moreover, we explore the fractality of our evolving self-similar
networks.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the past 20 years, the research on complex networks has attracted wide attention. For example, Watts and Strogatz [1]
put forward a small world model which depicts the characteristics of large clusters and short average path distance in
real networks, Barabási and Albert [2] proposed scale-free network model which has growth and preferred connections,
Newman [3–5] studied the structure and function of complex networks, and Milo et al. [6] investigated simple building
blocks of complex networks. For more information about complex networks, please refer to [7–14].

Self-similarity of irregular geometry was introduced by Mandelbrot [15], the founder of fractal geometry. Using box
counting method of fractal geometry, Song et al. [16–19] introduced a characteristic named fractality for complex networks.
Kim et al. [20] studied the fractality and self-similarity in scale-free networks, Gallos et al. [21–23] investigated functional
brain networks which are fractal networks, Zhang et al. [24] researched Vicsek fractal networks. Please also refer to [25–27]
for applications of self-similarity and fractality to complex networks in biology.

Li et al. [28] constructed the evolving self-similar networks in terms of substitution rule which replace edges of different
colors with different initial graphs and obtained the free-scale effect of their networks.

What will happen if we turn a node into an initial graph? In fact, Song et al. [18] studied this growth mechanism. We
consider an initial graph G1 = G = (V , E) with #V = m. By induction, assume that the graph Gt−1 has been constructed. Let
nodes x and y be neighbors in Gt−1, at the next time t , they are replaced by G(x) and G(y) respectively which are copies of the
initial graph G. We delete the edge from x to y in Gt−1 and add an edge (of Gt ) from one node in G(x) to another node in G(y),
where these two nodes are chosen randomly. It is noteworthy that the above growth process is not rigorously deterministic
if the initial pattern G is not symmetric.
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Fig. 1. An example with an unsymmetric initial pattern.

Fig. 2. Example 1.

In this paper, we use the directed graphs to revisit the above growthmechanism, inspired by the rigorously deterministic
idea in [29]. We take a directed graph G as the initial graph. Fix two nodes in G , we assign one (says A) as starting node and
another (says B) as ending node. Now, the substitution rule is that for an edge from node x to node y in Gt−1 we delete the
edge, replace x, y with the initial graph G(x) and G(y) respectively and add a directed edge from the starting node of G(x) to
the ending node of G(y). We obtain a family of evolving networks {Gt = (Vt , Et )}t by induction. Denote by G̃t the modified
undirected graph with respect to Gt . Finally, we get a family of undirected evolving networks {G̃t = (Vt , Ẽt )}t (see Fig. 1).

We recall some notions of fractal network by Song et al. [16,17]. An l-box is a subset of node set V such that the shortest
distance between any two nodes in the subset is less than l, and fractal dimension α is given by #V

N(l) ∼ lα , where N(l) is the
smallest number of l-boxes needed to cover the network.

We need to define an index for a undirected path in G̃. Given a undirected path γ = ẽ1 · · · ẽk passing nodes v0, . . . , vk,

where ei ∈ E for all i and ẽi connects vi−1 with vi. If the ei is from vi−1 to vi, we say the edge ei has positive direction,
otherwise say ei has negative direction. Let

αi =

{
1 if ei and ei+1 have the same direction,
0 otherwise.

Adding two directed edges to the path, one is from v0 to a dummy node, another is from a dummy node to vk, then we can
define α0 and αk as above. Denote

index(γ )=
k∑

i=0

αi.

For x, y in G̃, let n(x, y) be the smallest index of all paths from x to y in G̃, and

n = min (n(A, B), n(B, A)) .

The following result of this paper implies that the fractality exists and the fractal dimension depends heavily on the choice
of the starting node and the ending node.

Theorem 1. Suppose n > 1. Then self-similar networks {̃Gt}t satisfy the fractality, i.e.,

#Vt

Nt (l)
∼ l

logm
log n ,

where Nt (l) is the smallest number of l-boxes needed to cover Vt .
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