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a b s t r a c t

In this article, we introduce the algebra of block-symmetric cylinders and we show that
symmetric cylindrical constructions on base-graphs admitting commutative decomposi-
tions behave as generalized tensor products. We compute the characteristic polynomial
of such symmetric cylindrical constructions in terms of the spectra of the base-graph
and the cylinders in a general setting. This gives rise to a simultaneous generalization
of some well-known results on the spectra of a variety of graph amalgams, as various
graph products, graph subdivisions and generalized Petersen graph constructions. While
our main result introduces a connection between spectral graph theory and commutative
decompositions of graphs, we focus on commutative cyclic decompositions of complete
graphs and tree-cylinders along with a subtle group labeling of trees to introduce a class
of highly symmetric graphs containing the Petersen and the Coxeter graphs. Also, using
techniques based on recursive polynomials we compute the characteristic polynomials of
these highly symmetric graphs as an application of our main result.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background and main results

Nowadays, graph amalgams is a classic chapter in graph theory while the study of graph products and their spectra goes
back to the early days of this field of study [11] (also see [3,5,12]). The cylindrical graph construction as a generalized
edge-replacement procedure, introduced in [6] (also see [17]), is a graph amalgam that unifies a large number of graph
constructions including different kinds of graph products while it also introduces some new interesting amalgams. On the
other hand, study of graphs through assigning matrices that encode structural properties is also an old section of graph
theory with a large intersection with discrete spectral geometry and its methods. These along with the main duality proved
in [6] lead to the following basic question:

‘‘How far the cylindrical amalgam generalizes the tensor product of matrices and its properties?’’
In Section 2 we consider a subclass of cylindrical constructs that can be considered as generalized tensor products. Our

basic goal in this section is to introduce a general result (Theorem 1) that describes the spectrum of the construct in terms
of the spectra of its components where commutativity conditions are imposed. In this regard, we introduce the concept of a
commutative t-decompositionwhere in our main theorem the base-graph is decomposed into a commutative set of spanning
subgraphs by the corresponding labeling. We not only deduce a number of known results as corollaries of our main theorem
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(see Examples 2 and 3 and compare to [1,4,8,20]), but also, in our opinion, another interesting aspect of Theorem 1 is to
introduce a connection between the theory of graph decompositions and the theory of graph spectra (e.g. see Example 2).

On the other hand, investigating symmetries of graphs and their relations to multiplicities of eigenvalues is also an old
topic in spectral graph theory (e.g. see [10] and references therein), while constructing sparse highly symmetric graphs
is among the most fundamental problems in graph theory with deep applications in mathematics and computer science
(e.g. see [21] and Section 4). In this regard, in Section 3 as another application of our main result, using the concept of
tree-cylinders introduced in [17], we consider a special family of cylindrical constructions in which complete graphs are
sparsified by regular tree-cylinders. Moreover, we analyze the spectra of such constructions in detail. Hence, easily follows
that such a study is closely related to the study of the spectra of regular trees in which leaves are connected to each other
in a predefined way related to the twists of the construction. In particular, we distinguish a special highly symmetric case
of this construction that can be viewed as a generalization of the Petersen and the Coxeter graphs. We believe that these
graphs deserve more investigation in future research (see Section 4 for a discussion on this).

Summing up, the main result of the paper is Theorem 1 presented in Section 2.2, and called the main spectral theorem.
Among others, it shows that if the considered base-graph is decomposed into a commutative set of spanning subgraphs
by the corresponding labeling then the cylindrical construction by block-symmetric cylinders behaves as a generalized
tensor product, and consequently, the corresponding characteristic polynomial is computed using the main spectral
theorem. This links the fundamental subjects, graph decompositions and graph spectra in a general setup, making it
possible to use results on graph decompositions to construct graphs with prescribed properties for their spectra. Also,
some important consequences of Theorem 1 are the results of Section 3, and in particular Proposition 2 showing that the
main spectral theorem can be used to compute the spectra of sparsifications by tree-cylinders (see [6]), and in particular,
such sparsifications of complete graphs, giving rise to a class of highly symmetric graphs discussed in Section 3.1. Further
discussions on our results will appear in Section 4.

1.2. Notations and basic concepts

To add a couple of words on notations, we note that hereafter we only deal with finite loopless undirected multigraphs
which are referred to using math-Roman font as H, where matrices are referred to by italic-Roman font as H . Note that in
this setting, the adjacency matrix of such multigraph is defined to be the adjacency matrix of the corresponding weighted
graph in which the integer weight of each edge is the number of multiedges in the original graph. In the sequel, Kn is the
complete graph on n vertices and Pn is the path of length n−1. A regular tree is a tree whose non-leaf vertices have the same
degree.

Throughout this paper we denote by R the real number field, and by a matrix we mean a matrix with real entries in R
unless it is stated otherwise. The symbols I and J stand for the identity matrix and the all-one matrix, respectively, and we
define

Ī def
=

⎡⎢⎣ 0 1
...

1 0

⎤⎥⎦
where the dimensions of these matrices are assumed to be clear from the context. The transpose of a matrix H is denoted
by H

T
and the characteristic polynomial of a matrix H in terms of the variable x is defined as φ(H, x) def

= det(xI − H).
A key role in this paper is playing by the following useful concept.

Definition 1. A square 2 × 2 block matrix

A =

[
A1,1 A1,2
A2,1 A2,2

]
is defined to be block-symmetric (or bl-symmetric for short), if all blocks are symmetric matrices, A1,1 = A2,2 , and A1,2 = A2,1 .

Hereafter, given an integer k ≥ 1, we denote by Bk
def
= Bk (R) the R-algebra of all block square 2 × 2 matrices of size k

with entries in R, and by BSk
def
= BSk (R) the R-subalgebra of Bk formed by all bl-symmetric matrices. Also, in this setting BS

stands for the whole class of bl-symmetric matrices. ▲

Moreover, let us recall a standard determinant identity for block matrices in Bk as follows (e.g. see [23]):

det
[

A1,1 A1,2
A2,1 A2,2

]
= det(A1,1 − A1,2A

−1
2,2

A2,1 ) det(A2,2 ), (1)

whenever A2,2 is an invertible matrix.
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