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a b s t r a c t

We address questions of logic and expressibility in the context of random rooted trees.
Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as
an existential monadic second order sentence (EMSO). On the other hand, finiteness is not
expressible as an EMSO. For a broad class of random treemodels, including Galton–Watson
trees with offspring distributions that have full support, we prove the stronger statement
that finiteness does not agree up to a null set with any EMSO. We construct a finite tree
and a non-null set of infinite trees that cannot be distinguished from each other by any
EMSO of given parameters. This is proved via set-pebble Ehrenfeucht games (where an
initial colouring round is followed by a given number of pebble rounds).

Published by Elsevier B.V.

1. Introduction

The problem of expressibility in a given language parametrized by mathematical logic has been one of the classically
studied problems. In our paper, the setting is the space of all rooted trees, and the language is the set of all existential
monadic second order sentences on rooted trees. The property we specifically focus on is the finiteness of the rooted tree.

Before we go into the details of the questions and how we seek to answer them, we point out here that such questions
have important implications in descriptive complexity theory. Descriptive complexity measures the syntactic complexity
of formulae that express a certain property, instead of its computation complexity. See [5,8] and [10] for more general
discussions on this theory. A fundamental result in this area is the well-known Fagin’s theorem, which states that a property
is in the class NP (non-deterministic polynomial time computability) if and only if it is describable as an existential second-
order logical sentence (see [3]). If one can prove that the class of all existential second-order sentences is not closed under
negation, one shall establish that NP ̸= co-NP and therefore P ̸= NP.

It is possible to express the property of infiniteness of the rooted tree, in a simple way, as an existential monadic second
order sentence (EMSO) (see [1,2,4] and [11] for more on EMSO). This naturally raises the question as to whether finiteness
of the rooted tree, the negation of infiniteness, can also be expressed as an EMSO. The objective of this paper is to tie in
probabilitywith this question.We ask if it is possible, under ameasureµ that satisfies certain naturally occurring conditions,
that finiteness is expressible as an EMSO on all but a subset of trees of measure 0. We answer this question in the negative,
and the result is stated in Theorem 1.1. As a straightforward consequence of Theorem 1.1, one can conclude that finiteness
is not expressible tautologically as an EMSO.
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Henceforth, T denotes the set of all rooted trees on a set of nodes either enumerated by {1, . . . , n} for any n ∈ N, or by
N, such that every vertex in the tree has finite degree. The notations used in the statement of Theorem 1.1 are explained in
Section 1.1.

Theorem 1.1. Let µ be a probability measure on T that assigns positive probability to every set of the form {T : T |n= T ′
}, where

n ∈ N and T ′ is a finite tree. Then, the property of finiteness of rooted trees is not almost expressible as an existential monadic
second order sentence under the measure µ. That is, there do not exist a µ-null set of infinite trees T0 and an EMSO A, such that
every finite tree satisfies A and every infinite tree in T c

0 satisfies the negation of A.

Such a measure assigns positive weight to every finite tree. In particular, we can consider the measure induced by the
well-known Galton–Watson branching process with an offspring distribution χ that is supported on all of N0, the set of
non-negative integers, with expectation greater than 1 (i.e. the supercritical regime). An example is the Poisson distribution
with expectation greater than 1. In the following subsection, we set down the notations we use throughout the paper.

1.1. Some notation

We denote by Tµ the random rooted tree which follows the measure µ. For any tree T ∈ T , we let V (T ) denote its set
of nodes. For any v ∈ V (T ), we let d(v) denote the depth of v in T , where the root, usually denoted φ, has depth d(φ) = 0.
For v ∈ V (T ), let T (v) denote the subtree of T that is rooted at v, i.e. it is the subtree of T that consists of v and all the
descendants of v in T . When v is a child of the root, we call T (v) a principal branch of T . Let π (v) denote the parent of v, for
any v ∈ V (T ) \ {φ}. For a positive integer n and T ∈ T , let T |n denote the truncation of T , consisting of all nodes of depth at
most n. For two given rooted trees T and T ′, with roots φ and φ′ respectively, the statement T = T ′ implies that there exists
an isomorphism between T and T ′, i.e. a mapping ϕ : V (T ) → V (T ′) such that ϕ(φ) = φ′ and for every u, v ∈ V (T ), we
have π (v) = u if and only if π (ϕ(v)) = ϕ(u). For a positive integer k, we set [k] = {0, 1, . . . , k}.

1.2. EMSO on trees

Existential monadic second order (EMSO) sentences on T are of the form

∃ S1, . . . , ∃ Sn[P]

where S1, . . . , Sn are subsets of nodes of the tree, and P is a first-order sentence that involves the root as a constant symbol
and the relations= (equality of nodes),π (parent–child relationship) and∈ (inclusion in one of the subsets S1, . . . , Sn). Often,
it is more easily visualizable if we identify the subsets S1, . . . , Sn with colours, i.e. we partition the set of all rooted trees into
n colour classes. A classical example would be the infiniteness of the tree, which is expressible as follows:

∃ S
[[

φ ∈ S
]
∧

[
∀ u ∈ S [∃ v ∈ S[π (v) = u]]

]]
. (1.1)

In words, this asserts that there exists a set S of nodes containing the root, such that every element u of S has a child v in S.
As mentioned earlier, this paper is concerned with showing that the complementary event i.e. that the tree dies out, is not
expressible as an EMSO almost surely under any probability measure µ on T that satisfies the hypotheses of Theorem 1.1.
Our proof technique relies on a suitable version of the well-known Ehrenfeucht games, the set-pebble Ehrenfeucht games
(see Definition 2.2). For a discussion of Ehrenfeucht games, we refer the readers to [9] and [7].

2. Rooted colourings, set-pebble Ehrenfeucht and types games

In this paper, we fix an arbitrary positive integer r and consider a set Σ = {col0, . . . , colr} of r + 1 colours. Later on, we
shall consider a set Σ of ‘‘augmented" colours that is derived from Σ .

Definition 2.1 (Rooted Colouring). Given the set Σ of colours, and a tree T ∈ T , we call a colouring σ : V (T ) → Σ a
(Σ, col0)-rooted colouring of T if σ (v) = col0 ⇔ v = φ, for all v ∈ V (T ).

We insist upon assigning a unique colour to the root because it is a constant symbol in our language. Given a T ∈ T and a
(Σ, col0)-rooted colouring σ of T , we shall talk of the pair (T , σ ) in the subsequent exposition, and call it a (Σ, col0)-coloured
tree.

As previously mentioned, the set-pebble Ehrenfeucht game, defined below, will be our main tool in proving that indeed,
there is a set of trees of positive measure on which finiteness is not an EMSO. A generalized version of this game is described
in Definition 7.17 of [6], where it is referred to as the Fagin game.

In all games considered in this paper, when we say that a particular player wins, we mean with optimal play by both the
players. In other words, the player who wins has a strategy that guarantees a win regardless of the other player’s moves.

Definition 2.2 (The Set-Pebble Ehrenfeucht Game). This game is played between two players, Spoiler and Duplicator. They are
given two trees T1, T2 with roots φ1, φ2, and a positive integer k. The game consists of k+ 1 rounds, and each round consists
of a move by Spoiler and a subsequent move by Duplicator. These rounds can be divided into the following:
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