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Abstract

The paper proposes a homomorphic encryption scheme with public key size based on summation integer of sparse subset. The full-
homomorphic encryption scheme that applies the batch processing technology to the integer can homomorphically process and encrypt a
plaintext vector in a ciphertext to improve the efficiency of the original scheme, yet its size of the public key is ~Oðk8Þ. In an effort to reduce
the size of public key for this scheme, we combine quadric form of public key elements and ciphertext compression to present SomeWhat
homomorphic public key scheme, which reduces the security of public key scheme into the approximate integer GCD problem, thereby
converting the homomorphic encryption scheme into full homomorphic encryption scheme. For the proposed homomorphic encryption
scheme with public key size based on summation integer of sparse subset, the public key size for improve scheme is ~Oðk5:5Þ, a smaller size.
Lastly, the scheme is proved to be semantically secure.
� 2018 Elsevier B.V. All rights reserved.
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1. Introduction

In 1979, Rivest et al. suggested the concept of ‘‘privacy
homomorphism” according to the characteristic of multi-
plicative homomorphism in RSA public key encryption
system, i.e., it can directly operate the ciphertext instead
of operating it after decrypting the ciphertext. The crypto-
logical scholars made numerous studies in the past three
decades, yet they failed to suggest the schemes with charac-
teristic of full homomorphism, i.e. the schemes cannot
operate the ciphertext with arbitrary complexity to realize
corresponding operation for the plain text. In 2009, The
IBM researcher Graig Gentry used ideal lattice to con-
struct the first full homomorphic encryption scheme
(Arunkumar et al., 2013; Faig et al., 2017), whose structure

is in the several steps as follows: Firstly, constructing a
‘‘SomeWhat homomorphic encryption scheme”, as the
ciphertext is added with noise whose degree increases with
additive or multiplicative homomorphic operations for
ciphertext, and only when the noise degree is lower than
a certain threshold can the decryption be correctly con-
ducted, thus this scheme can only realize addition or mul-
tiplication operation with limited times for the ciphertext;
secondly, compressing the decryption circuit to reduce
the complexity of decoding algorithm to obtain the boot-
strapping, and using the re-encryption technique to refresh
the ciphertext to lower the ciphertext noise, thereby making
the ciphertext noise within allowable scope, and these
refreshed ciphertexts can be subjected to homomorphic
operation, refreshing the ciphertext relentlessly can realize
homomorphic operation with infinite times for ciphertext,
thereby realizing a full homomorphic encryption scheme.
As the homomorphic encryption is widely applied in
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protecting security and privacy of user data in the cloud
computing environment, ciphertext retrieval and process-
ing and multiparty computation, the full homomorphic
encryption has become the hotspot of the research in cryp-
tological domain since Gentry made breakthrough in full
homomorphic encryption.

2. Symbols definition

2.1. Symbols and parameters definition

For a real number dxe, bxc, {FLD3} and bxe respectively
represent upper, lower and near roundness for the real
number x. For a real number z and an integer p, qp(z)
and rp(z) or [z]p are respectively used to represent the quo-
tient and remainder obtained by dividing z by p. A safety
parameter k is given, and the parameters we need to use
are: the bit length c for integer xi in public key; bit length
g of private key p; bit length q of noise ri; number s of xi
in the public key; and the secondary noise parameter q0

in encrypting process.
The paper adopts Greek letters to represent parameters.

Wherein, k is the security parameter. The real numbers
and integers are represented by lowercase English letters.
For a real number z, dze represents upper integer,
i.e. dze 2 ½z; zþ 1Þ, bzc represents lower integer, i.e.
bzc 2 ðz� 1; z�, bze represents the nearest integer, i.e.

bzc 2 z� 1
2
; zþ 1

2

� �
, [z] represents taking the integral part

of z, {z} represents taking the decimal part of z, i.e. {z}
= z � [z]. For a real number z and an integer p, qp(z) and
rp(z) respectively represent the quotient and remainder
obtained by dividing z by p, i.e. qpðzÞ ¼ bz=pe,
rpðzÞ ¼ z� qpðxÞ � p. It is obvious that rpðzÞ 2 ð�p=2; p=2�.
The paper adopts [z]p or z mod p to represent modeling z

with p.

2.2. Summation for sparse subset

According to the full homomorphic encryption scheme
proposed by Gentry in his doctoral thesis, the full homo-
morphic encryption is to obtain bootstrapping by com-
pressing the decryption circuit based on the SomeWhat
homomorphic encryption scheme, then to realize the full
homomorphic encryption through bootstrapping conver-
sion. The BDGHV scheme is also constructed according
to such idea. Here we only give an outline of the optimized
SomeWhat homomorphic encryption scheme: KeyGen

ð1kÞ: A prime number set p0, . . . , pl�1 is generated, where,
the bit length of pi is g, p represents their product. A noise-
less public key element x0 = q0 * p is defined, where, q0
meets following condition: q0  Z \ ½0; 2c=pÞ, not includ-
ing prime number factor and smaller than 2k

2

. The integers
xi, x0i and Pi distributed uniformly and independently in
Z \ ½0; q0Þ are generated, and when 0 6 j 6 l� 1, the fol-
lowing is met:

When 1 6 i 6 s, xi mod pj = 2ri,j, where ri;j  Z\
ð�2u0�1; 2u0�1Þ.
When 0 6 i 6 l� 1, x0i mod pj ¼ 2r0i;j þ di;j, where

r0i;j  Z \ ð�2u; 2uÞ.
When 0 6 i 6 l� 1, Pi mod pj ¼ 2-i;j þ di;j � 2u0þ1,
where -i;j  Z \ ð�2u; 2uÞ. So, public key pk ¼
hx0; ðxiÞ06i6s; ðx0iÞ06i6l�1; ðPiÞ06i6l�1i, and private key

sk ¼ ðpjÞ06j6l�1.

Encrypt ðpk;m 2 f0; 1glÞ: Selecting random integer
vector b ¼ ðbiÞ16i6s 2 ð�2a; 2aÞs and b ¼ ðb0iÞ06i6l�1

2 ð�2a0 ; 2a0 Þl, calculate cyphertext c ¼ Pl�1
i¼0mi � x0iþ

h
Pl�1

i¼0b
0
i �Pi þ

Ps
i¼1bi � xi�.

Decrypt(sk, c): Output m = (m0, . . . , ml�1), where
mj  ½c�pj mod 2.

Add(pk, c1, c2): Output c1 + c2 mod x0.
Mult(pk, c1, c2): Output c1 � c2 mod x0.

Wherein, the parameters in the scheme should meet the
following constraint conditions: u P 2k to avoid the brutal
force attack on noise; g P a0 þ u0 þ 1þ log2ðlÞ to guaran-

tee correctness of decryption; g P q �Hðklog2kÞ to support
homomorphic operation in evaluating ‘‘compression of
decryption circuit‘‘; c ¼ xðg2 � log kÞ to prevent the
lattice-based attack; q0 P qþ k and a0 P aþ k to guaran-
tee semantic security of scheme; a � s P cþ k and
s P l � ðq0 þ 2Þ þ k to be able to apply the leftover hash
lemma in proving the semantic security of scheme; to meet
the above constraints, following parameters can be

selected: u ¼ 2k, u0 ¼ 3k, g ¼ ~Oðk2Þ, c ¼ ~Oðk5Þ,
a ¼ ~Oðk2Þ, a0 ¼ ~Oðk2Þ, l ¼ ~Oðk2Þ, s ¼ ~Oðk3Þ, where, k is
the security parameter.

According to the above parameter setting, the size of

public key is ~Oðk8Þ. As a matter of fact, according to the
description in literature Malarkodi, Arunkumar, and
Venkataraman (2013), to prevent lattice-based attack, the
bit length c of public key xi should be at least of 223 bits.
While now, the size of public key is at least of 246 bits,
and such a big public key are impossible to be applied in
any actual cryptosystem.

2.3. Ciphertext size

To decrease the size of ciphertext in the process of
encrypting, metatype x0 is accumulated. However, such
processing cannot be done in calculating ciphertext, as even
only one multiplication of ciphertext is executed, the result
would be far greater than x0, and if model treatment is con-
ducted, a big x0 times would be added or deducted, which
would lead to the intolerable errors.

In calculation of ciphertext, to reduce the size of cipher-
text, we add more elements like x0i ¼ q0ip þ r0i to the public
key, where, r0i is selected from interval [�2q, 2q] like usual
noise, while q0i is far greater than the value of q among
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