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a b s t r a c t

Deregulated energy markets, demand forecasting, and the continuously increasing share of renewable
energy sources call – among others – for a structured consideration of uncertainties in optimal power
flow problems. The main challenge is to guarantee power balance while maintaining economic and
secure operation. In the presence of Gaussian uncertainties affine feedback policies are known to be
viable options for this task. The present paper advocates a general framework for chance-constrained opf
problems in terms of continuous randomvariables. It is shown that, irrespective of the type of distribution,
the random-variable minimizers lead to affine feedback policies. Introducing a three-step methodology
that exploits polynomial chaos expansion, the present paper provides a constructive approach to chance-
constrained optimal power flow problems that does not assume a specific distribution, e.g. Gaussian, for
the uncertainties. We illustrate our findings by means of a tutorial example and a 300-bus test case.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The continuing increase in electricity generation from renew-
able energy sources and liberalized energy markets pose chal-
lenges to the operation of power systems [1]; i.e., the importance
of uncertainties is on the rise. Uncertainty leads to and/or increases
fluctuating reserve capacities, and varying line power flows across
the network, among others. The structured consideration of un-
certainties is thus paramount in order to ensure the economic and
secure operation of power systems in the presence of fluctuating
feed-ins and/or uncertain demands.

Optimal power flow (opf) is a standard tool for operational
planning and/or system analysis of power systems. The objective is
to minimize operational costs whilst respecting generation limits,
line flow limits, and the power flow equations. Assuming no uncer-
tainties are present the solution approaches to this optimization
problem are numerous, see for example references listed in [2]. In
the presence of stochastic uncertainties the opf problem must be
reformulated, ensuring

(i) that technical limitations (inequality constraints) are met
with a specified probability, and

(ii) that the power flow equations (equality constraints) are
satisfied for all possible realizations of the uncertainties,
i.e. power system stability is achieved.
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Regarding issue (i), chance-constrained optimal power flow (cc-
opf) is a formulation that allows inequality constraint violations
with the probability of constraint violation as a user-specified
parameter. Individual chance constraints admit deterministic, dis-
tributionally robust convex reformulations of the cc-opf prob-
lem [3]. For Gaussian uncertainties these reformulations are ex-
act [3–5]. Alternatively, it is possible to solve the individually
chance-constrained optimization problem by means of multi-
dimensional integration [6,7]. Scenario-based methods – often
applied to multi-stage problems [8–10] – are an alternative to
chance-constrained approaches; the chance constraints are re-
placed by sufficiently many deterministic constraints leading to
large but purely deterministic problems [11].

Regarding issue (ii), the power flow equations are physical
constraints that hold despite fluctuations. This requires feedback
control. In particular, automatic generation control (agc) balances
mismatches between load and generation, given sufficient reserves
can be activated. Affine policies have been shown to yield power
references that satisfy dc power flow in the presence of (multi-
variate) Gaussian uncertainties [3–5,12] (assuming ideal primary
control). Existing approaches [3–5,12] to single-stage cc-opf under
dc power flow and Gaussian uncertainties directly formulate the
cc-opf problem in terms of the parameters of the affine feedback,
leading to finite-dimensional second-order cone programs. How-
ever, the relevance and advantages of non-Gaussian uncertainties
for modeling load patterns and renewables have been emphasized
in the literature [13–15]. Certain non-Gaussian distributions (such
as Beta distributions) allow compact supports and skewed prob-
ability density functions, which hence overcome modeling short-
comings of purely Gaussian settings. For example, to model a load
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List of Symbols

N Number of buses
N Set of bus indices
Nl Number of lines
Nl Set of line indices
u Controllable active power
d Uncontrollable active power
pl Line power flow
α agc coefficients
J Cost function
x, x Lower bound, upper bound of x
1n n-dimensional column vector of ones
φ Power transfer distribution factor matrix
Ω Set of outcomes
P Probability measure
L2(Ω,R) Hilbert space of second-order random variables

w.r.t. probability measure P
ξ Stochastic germ
ψℓ ℓth basis function
ψ Vectorized basis ψ = [ψ1, . . . , ψL]

⊤

⟨·, ·⟩ Scalar product
L + 1 pce dimension
x Random variable
x̃ = x(ξ̃ ) Realization of random variable x
xℓ ℓth vector of pce coefficients of x
X Matrix of pce coefficients of x of degree greater

zero
E [x] Expected value of x
Var [x] Variance of x

via aGaussian randomvariable always bears a non-zero probability
for the load acting as a producer. Arguably, this probability may be
small, but an uncertainty description that rules out this possibility
by design is physically consistent and desirable.

We remark that how to address the reformulation of inequality
constraints in the problem formulation, i.e. issue (i), is a user-
specific choice. As such, this choice resembles a trade-off between
computational tractability and modeling accuracy. In contrast, the
validity of the power flow equations, i.e. issue (ii) imposes a physi-
cal equality constraint that has to be accounted for in the problem
formulation. The present paper proposes a general framework for
chance-constrained opf that combines modeling uncertainties in
terms of continuous random variables of finite variance, and a
rigorous mathematical consideration of the power flow equations
as equality constraints of theopfproblem. It is shown that a formu-
lation of the cc-opf problem in terms of randomvariables naturally
leads to engineering-motivated affine policies. Under the mild
assumption that uncertainties are modeled as continuous random
variables of finite variance with otherwise arbitrary probability
distributions, our findings highlight that the optimal affine policies
are indeed random-variable minimizers of an underlying cc-opf
problem.

A consequence of the last item is that the proposed general
framework to cc-opf embeds and extends current approaches [3–
5,12] which consider purely Gaussian settings.

The key step is to formulate the cc-opf problem rigorously with
random variables as decision variables. This unveils the infinite-
dimensional nature of cc-opf. A three-stepmethodology concisely
describes the proposed approach to cc-opf: formulation, parame-
terization, optimization. This results in optimal affine policies that
satisfy power balance despite uncertainties. The corresponding
optimization problem scales well in terms of the number of uncer-
tainties. For common individual chance-constraint reformulations

it leads to a second-order cone program. Polynomial chaos expan-
sion (pce) is employed to represent all occurring random variables
by finitely many deterministic coefficients.

While pce dates back to the late 30s [16], it has been ap-
plied to power systems only recently, for example to design a
power converter [17], to design observers in the presence of un-
certainties [18], and to solve stochastic power flow [19–23]. The
applicability of pce to opf problems under uncertainty has been
demonstrated in [19–22]. The works [21,22] focus on computa-
tional details when implementing pce. In contrast, [19,20] men-
tion that the power flow equations are always satisfied. How-
ever, [19,20] do not put pce approaches to opf in relation to other
existing approaches, and do not show optimality of affine policies.
Instead, the present paper takes a different view: starting from
existing approaches [3–5,12] we show that pce is a generalization;
the more mathematical nature of pce is thus related to the engi-
neering practice of affine policies.

The present manuscript focuses on a framework for single-
stage opf problems under uncertainty, highlighting the impor-
tance of affine control policies rigorously irrespective of the kind
of distribution of the uncertainty. Affine policies have also been
applied to multi-stage opf under uncertainty [8,10,24,25], where
their use is motivated based on engineering intuition. For multi-
stage opfproblems the handling of the inequality constraints is
similar to single-stage opf: it comprises analytically reformulated
chance constraints [25], convex reformulations [26], and scenario-
based approaches [27].

Summing up, the contributions of our work are as follows:
We provide a problem formulation of chance-constrained opf in
terms of random variables that is shown to contain existing ap-
proaches [3–5,12]. We further give a rigorous proof showing when
affine policies are optimal. Additionally, we highlight an important
dichotomy: optimal policies of chance-constrained opf correspond
to optimal random variables. Finally, we provide a tractable and
scalable reformulation of the random-variable problem in terms of
a second-order cone program by leveraging polynomial chaos ex-
pansions. The combination of the contributions provide a tractable
framework for chance-constrained opf.

The remainder is organized as follows: Section 2 introduces
the cc-opf problem in terms of random variables, and demon-
strates the flexibility of the proposed formulation: existing ap-
proaches for Gaussian uncertainties can be obtained as special
cases (Section 2.2). The observations at the end of Section 2 lead
to a three-step methodology to cc-opf, presented in Section 4 in
greater detail. Section 3 introduces polynomial chaos expansion
as a mathematical tool that is required to tackle Section 4. The
methodology developed in Section 4 is demonstrated for a tutorial
3-bus example in Section 5.1, and a 300-bus test case in Section 5.2.

2. Preliminaries and problem formulation

Consider a connected N-bus electrical transmission network in
steady state that is composed of linear components, for which the
dc power flow assumptions are valid (lossless lines, unit voltage
magnitude constraints, small angle differences). The Nl lines have
indices Nl = {1, . . . ,Nl}. For simplified presentation each bus
i ∈ N = {1, . . . ,N} is assumed to be connected to one generation
unit, and one fixed but uncertain power demand/generation. The
net active power realization p ∈ RN is p = u + d, where u ∈ RN

represents adjustable/controllable (generated) power, and d ∈ RN

resembles (uncontrollable) power demand in case of di < 0 for bus
i ∈ N , or (uncontrollable) renewable feed-in in case of dj > 0 for
bus j ∈ N . The goal of (deterministic)opf is tominimize generation
costs J(u) with J : RN

→ R such that the power flow equations are
satisfied (equality constraints), and generation limits and line flow
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