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a b s t r a c t

Capillary–gravity waves generated by a steadily translating disturbance are studied via a direct analysis
based on the geometrical relationship between dispersion curves on the Fourier plane and the corre-
sponding wave pattern on the free surface, through which wave crestlines, wavelength, cusp angles and
phase & group velocities are explicitly obtained.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

When a body (such as: a ship with large scale or an insect with
small scale) or a pressure patch travels along a straight path at a
constant speed c on the air–water interface, free-surface waves,
in the form of a stationary wave pattern, are generated. In the
analysis of such stationary waves, the surface tension effect is
usually ignored inasmuch as the surface tension effect is predomi-
nant only for very short waves with the wavelength in the order
of centimeters [1,2]. Since Lord Kelvin [3], the stationary waves
generated by a moving obstacle have been studied extensively.
In deepwater, its pattern composed of transverse and divergent
wave systems is confined in a V-shaped region (classical Kelvin’s
ship wave pattern), and the half-angle of this sector is called as
‘‘Kelvin angle’’ which is ΓK = arcsin 1/3 ≈ 19.47◦ independent of
the ship’s speed [4,5]. The Kelvin angle can be expounded by per-
forming stationary phase analysis of the dispersion relation [5,6]
or analyzing the propagating direction of the group velocity [7].

Interestingly, the free-surface wave pattern created by a stead
ily moving obstacle can be totally different from the Kelvin’s ship
wave pattern when the surface tension effect is accounted for
[8–10]. The case of combined effects of capillarity and gravity
on free-surface waves generated by a translating object has been
considered recently [9–13]. Both experimental observation and
numerical calculation show that there are waves in front of the
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disturbance [10–12], which cannot be predicted by the theory of
pure-gravity waves. In addition, one notable behavior is that there
is no wave generated and the corresponding wave resistance is
zero when the traveling speed is less than the minimum speed of
capillary–gravity waves cmin ≈ 0.2313 m/s [4,5].

Besides, in the classical hydrodynamic textbook by Lamb [4],
two typical wave patterns are presented. At a low forward speed,
both gravity and capillarity effects are important, and the wave
pattern is smooth and curved without divergent waves. However,
at a high speed, the surface tension effect is insignificant, and
the wave pattern is close to the Kelvin’s ship wave pattern. It is
estimated that the disappearance of divergent waves occurs at c ≈

2cmin [14]. The exact transition speedwas first found by Binnie [15]
which is approximately equal to c ≈ 1.938cmin, and then wave
patterns crossing the transition speed are described in [10,9,16,13].

In the present paper, we study the stationary waves with the
combined capillary–gravity effect associated with a point pertur-
bation based on a direct analysis via establishing the geometrical
relationship between dispersion curves on the Fourier plane and
the corresponding wave pattern on the free surface. This relation-
ship was firstly established by Crapper [14]. This technique was
also applied to analyze the unsteady ship waves as well as steady
ship waves in finite water depth [17,18]. By using this relationship,
far-field wave profiles, cusp angles and phase & group velocities
can be determined in an explicit and simple way. Through inves-
tigating the inflection points along the dispersion curve, the wave
systems are classified. At cdiv ≈ 0.4484 m/s which is consistent
with the finding in [15], two inflection points coincide and diver-
gent waves disappear. Besides, another speed cD ≈ 0.6800 m/s
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associated with the angle of demarcation asymptote of gravity-
dominant and capillarity-dominant waves, which has never been
reported in the literature, is obtained. Behaviors of the wave pat-
tern and cusp angles for different velocities across critical speeds
cdiv and cD are investigated.

The layout of the present paper is organized as following. In
Section 2, the dispersion relation associated with the linear free-
surface boundary condition is outlined, and dispersion curves on
the Fourier plane are discussed. In Section 3, the relationship
between dispersion curves on the Fourier plane and the free-
surface wave pattern in the physical space is established, and
cusp angles associated with inflection points along the dispersion
curves are studied. In Section 4, features of dispersion curve and
the corresponding far-field wave pattern for traveling speeds c
across the critical speeds cdiv and cD are exhibited. Cusp angles
associated with inflection points and angle of demarcation are set
forth. Finally, concluding remarks are presented in Section 5.

2. Dispersion relation and dispersion curves

Consider an incompressible, inviscidwater domainwith infinite
depth and lateral extent bounded on the top by an air–water
interface free surface. A three-dimensional Cartesian coordinate
system OXYZ steadily traveling with the disturbance at a constant
speed c in the direction of positive OX axis is defined with the XY
plane coinciding with the undisturbed free surface and the OZ axis
orienting positively upwards. Here, the gravitational acceleration
g = 9.8067 m/s2, translating speed c and water density ρ = 1000
kg/m3 are used to define nondimensional coordinates (x, y, z),
Fourier variables (α, β, k), velocity potential φ and pressure p as:

(x, y, z) =
g
c2

(X, Y , Z) , (α, β) =
c2

g
(A, B) ,

φ =
g
c3

Φ, p =
P

ρc2
.

(1)

The characteristic wavenumber of capillary waves is KT =
√

ρg/T [5] while the fundamental wavenumber of pure-gravity
stationary waves is KG = g/c2, so that the parameter σ associated
with the surface tension effect is defined as the ratio of both [14,8]:

σ =
KG

KT
=

g
c2

√
T
ρg

, (2)

where T represents the air–water interface tension T ≈ 0.073N/m
[4,5]. The parameter σ represents the significance of the surface
tension effect. From (2), the surface tension effect is important at a
low forward speed, whereas it can be ignoredwhen the translation
speed is high. Then, the governing equation and linear free-surface
boundary conditions in nondimensional forms are written as:

∇
2φ = 0 in the fluid domain, (3a)

p −
∂φ

∂x
+ E + σ 2

(
∂2E
∂x2

+
∂2E
∂y2

)
= 0 on z = 0, (3b)

−
∂E
∂x

=
∂φ

∂z
on z = 0, (3c)

where E means the free-surface elevation. Introducing the Fourier
transformwith respect to physical quantities p,φ and E yields [19]:⎧⎨⎩

p̂
φ̂

Ê

⎫⎬⎭ =

∫
∞

−∞

∫
∞

−∞

{p
φ

E

}
ei(αx+βy)dxdy, (4)

By performing the Fourier transform to the Laplace equation
and free-surface boundary conditions given by (3) as conducted in

[5], we can obtain:

Ê =

√
α2 + β2p̂

α2 −
√

α2 + β2 − σ 2
(
α2 + β2

)3/2 , (5)

then the expression of the free-surface elevation can be obtained:

E (x, y) =
1

4π2

∫
∞

−∞

∫
∞

−∞

p̂ (α, β)

√
α2 + β2

D (α, β)
e−i(αx+βy)dαdβ, (6)

where the function D (α, β) in the denominator represents the
dispersion function defined on the (α, β) Fourier plane [5]:

D (α, β) = α2
−

√
α2 + β2 − σ 2(α2

+ β2)3/2, (7)

where the wavenumber vector is defined as: (α, β) = k(cos θ,

sin θ ). By enforcingD (α, β) = 0,weobtain the dispersion relation-
ship associated with the linear free-surface boundary condition.
By plotting D = 0 on the (α, β) Fourier plane, we get dispersion
curves. Dispersion curves defined by D = 0 are symmetrical with
respect to both axes α = 0 and β = 0. In the quadrant α ≥ 0
and β ≥ 0, dispersion curves are defined explicitly in polar Fourier
coordinates (k, θ) by two characteristic wavenumbers:⎧⎪⎪⎨⎪⎪⎩

kG =
2

cos2θ +
√
cos4θ − 4σ 2

as k ≤ kD,

kT =
cos2θ +

√
cos4θ − 4σ 2

2σ 2 as k ≥ kD,

(8)

where kD = 1/σ denotes the wavenumber dividing the disper-
sion curve into gravity-dominant and capillarity-dominant com-
ponents. In Eq. (8), kG ≤ kD denotes the wavenumber of gravity-
dominant waves, and kT ≥ kD represents the wavenumber of
waves where the capillarity plays a dominant role [14]. The dis-
persion curve is closed and confined in the following region:

0 ≤ |θ | ≤ θD = arctan

√
1 − 2σ
2σ

, (9)

When σ > 1/2, θD does not exist, nor does the dispersion curve.
At the critical value σ = 1/2with the corresponding speed defined
as cmin ≈ 0.2313 m/s, the dispersion curve reduces to an isolated
point at (α, β) = (2, 0) and θD = 0 according to expression (9)
whichmeans that allwaves disappear since the obstacle’s traveling
speed is less than the minimum speed of capillary–gravity waves.
Therefore, free-surface waves cannot be generated when the trav-
eling speed c is less than the critical speed cmin ≈ 0.2313 m/s. At
θ = θD, we have k = kD =

√
α2
D + β2

D as displayed in Fig. 1. At
θ = 0, we define two wavenumbers k0G and k0T as:

k0G =
2

1 +
√
1 − 4σ 2

and k0T =
1 +

√
1 − 4σ 2

2σ 2 , (10)

so that the dispersion curve intersects the α-axis at a minimum
wavenumber α = k0G and a maximum wavenumber α = k0T as
depicted in Fig. 1. Wavenumbers k0G and k0T are associated with
thewavelengths along the translating track of the disturbance. The
wavelengths of gravity-dominant and capillarity-dominant waves
are given by

λ0
G =

2π
k0G

= π

(
1 +

√
1 − 4σ 2

)
and

λ0
T =

2π
k0T

=
4πσ 2

1 +
√
1 − 4σ 2

.

(11)

Dispersion curves expressed in (8) on the (α, β) Fourier plane
are displayed in Fig. 1 for σ = 0 when the surface tension effect
is ignored and σ = 0.275 when the surface tension effect is
accounted for. The dispersion curve without the surface tension
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