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Distributed parameter estimation for large-scale systems is an active research problem. The goal is to
derive a distributed algorithm in which each agent obtains a local estimate of its own subset of the
global parameter vector, based on local measurements as well as information received from its neighbors.
A recent algorithm has been proposed, which yields the optimal solution (i.e., the one that would be
obtained using a centralized method) in finite time, provided the communication network forms an
acyclic graph. If instead, the graph is cyclic, the only available alternative algorithm, which is based on
iterative matrix inversion, achieving the optimal solution, does so asymptotically. However, it is also
known that, in the cyclic case, the algorithm designed for acyclic graphs produces a solution which,
although non optimal, is highly accurate. In this paper we do a theoretical study of the accuracy of this
algorithm, in communication networks forming cyclic graphs. To this end, we provide bounds for the
sub-optimality of the estimation error and the estimation error covariance, for a class of systems whose
topological sparsity and signal-to-noise ratio satisfy certain condition. Our results show that, at each node,
the accuracy improves exponentially with the so-called loop-free depth. Also, although the algorithm no
longer converges in finite time in the case of cyclic graphs, simulation results show that the convergence
is significantly faster than that of methods based on iterative matrix inversion. Our results suggest that,
depending on the loop-free depth, the studied algorithm may be the preferred option even in applications

with cyclic communication graphs.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the fast development of sensor networks and wireless
communications, the scale of systems is becoming increasingly
large. Since centralized estimation requires a fusion center to
process all the information from the whole graph, the compu-
tation and communication burden increases with the system'’s
size. Thus, the centralized estimation approach is not suitable for
large-scale systems, and distributed approaches are needed. The
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development of distributed estimation has attracted a great deal
of attention (Garin & Schenato, 2010; Gupta, Dana, Hespanha,
Murray, & Hassibi, 2009; Li & Alregib, 2009; Ribeiro & Giannakis,
20064, b). It finds applications in industrial monitoring, multi-
agent systems, the smart grid, etc.

The distributed estimation problem consists of a network of
interconnected nodes, each of which aims to obtain an estimate of
certain vector of interest. This is achieved through an iterative pro-
cedure in which each node processes its available information, and
exchange relevant information with its neighbors, in order to suc-
cessively compute the required estimate as accurately as possible.
The existing distributed estimation problems can be broadly classi-
fied into four classes. These classes are: static fully reconstructive,
static partially reconstructive, dynamic fully reconstructive and
dynamic partially reconstructive. A fully reconstructive system is
one in which each node aims to obtain an estimate of the same
vector. In contrast, in a partially reconstructive system, each node
aims to obtain an estimate of its own partial sub-vector of interest.
Also, a static system is one in which prior knowledge of the state at
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a certain time is independent of the knowledge of the same state
at previous times. A dynamic system refers to the complementary
case. We point out that methods for dynamic estimation can be
readily used for static problems, by choosing the dynamic model
in a way such that the state stays constant over time.

In the static fully reconstructive problem, the most popular
distributed estimation algorithm is consensus (Garin & Schenato,
2010). By running average consensus on the information vector
and information matrix of each node, in view of the weighted least
squares (WLS) formula, the final estimate of each node converges
to the one obtained via WLS (Olfati-Saber, 2005). Although the
average consensus algorithm is simple, it has two main disad-
vantages: First, the communication burden is large, as each node
communicates W scalars to its neighbors, where n is the
dimension of the estimated vector. Second, the convergence of
average consensus requires infinite iterations, and the stopping
criterion is still an open problem. To avoid these two disadvan-
tages, many algorithms have been proposed (Ajgl & Simandl,
2014; Calafiore & Abrate, 2009; Chen, Arambel, & Mehra, 2002;
Pasqualetti, Carli, & Bullo, 2012). One of the most important works
is the one in Pasqualetti et al. (2012), where using the space
structure of measurements and doing kernel projection, each node
achieves its minimum norm solution in a finite number of steps.

In the static partially reconstructive problem, since each node
considers its own partial state, the consensus algorithm is not
applicable. For the case in which the graph induced by the com-
munication network is acyclic (i.e., without loops), an algorithm
is proposed in Tai, Lin, Fu, and Sun (2013). In this algorithm,
each node obtains a WLS estimate on its own state in a finite
number of steps. When the graph is cyclic (i.e., with loops), Marelli
and Fu (2015) gave a novel method which, based on Richardson
iterations, solves the WLS estimation problem. However, it does
so asymptotically, i.e., in infinite iterations. We point out that
most estimation algorithms for large-scale systems are partially
reconstructive, since the whole state of the system is often of very
high dimension.

In the dynamic fully reconstructive problem, the consensus
algorithm is also a popular option. In Matei and Baras (2012),
one consensus algorithm is run at each sampling time, using
the partial estimates obtained at each node, based on their local
measurements. Building on this line, a study on the number of
consensus iterations required at each sampling time to guarantee
the stability of the estimator, under the observability condition,
is done in Acikmese, Mandi¢, and Speyer (2014). Also, the so-
called diffusion Kalman filter (Cattivelli & Sayed, 2010) runs
consensus on the estimates obtained at each sensor, using local
measurements as well as those from neighbors. As opposite to
doing consensus on the estimates, the authors of Battistelli and
Chisci (2014) found that, by running consensus on the information
matrices and vectors, observability is sufficient for the estimation
stability.

Concerning the dynamic partially reconstructive problem, in-
formation passing and processing methods guaranteeing a stable
estimate are proposed in Farina, Ferrari-Trecate, and Scattolini
(2010), Khan and Moura (2008), Zhou (2013) and Zhou (2015).
Also, the authors of Haber and Verhaegen (2013) study systems
with banded dynamic state transition matrices, concluding that
the contribution from faraway nodes decreases with the increase
of their distance. The authors also propose the moving horizon
estimation approach as an approximation to the optimal state
estimate.

In this paper we focus on the static partially reconstructive
problem. Also, as typically done in static problems, we assume
that the vector to be estimated is deterministic. More precisely, we
consider the algorithm in Tai et al. (2013), which, as mentioned,
yields the optimal solution in finite-time, only when the commu-
nication graph is acyclic. For cyclic graphs, this algorithm is not

guaranteed to produce the optimal solution. Nevertheless, in many
applications, even in the presence of loops, it delivers very good
approximations to the optimal solution, in only a very few steps.
For those applications, this makes the algorithm a valid alternative
to the method in Marelli and Fu (2015) even for cyclic networks.
This is because, while the later guarantees the optimal solution, the
former one converges much faster. Motivated by this, we study the
accuracy of the estimate produced by the algorithm in Tai et al.
(2013), under the general setting of a cyclic graph.

For a class of systems whose topological sparsity and signal-
to-noise ratio satisfy certain condition, we are able to determine
the accuracy of the estimates and their associated estimation error
covariances, with respect to those achievable via a centralized
WLS method. Our formulas clearly show how accuracy depends
on the so-called loop-free depth of each node. More precisely, the
estimates and estimation error covariances approach those from
the centralized solution, exponentially on the loop-free depth.

The rest of this paper is organized as follows. In Section 2, we
give the problem formulation and introduce the distributed WLS
algorithm under study. In Section 3, we show how to convert a
given graph into other equivalent ones, which are instrumental
for analyzing the behavior of the algorithm in cyclic graphs. In
Section 4, we introduce our notation, as well as the definition of
the Riemannian Distance between matrices, together with some of
its properties. The accuracy of the information matrices (i.e., the
inverses of the error covariances) and state estimates produced by
the distributed WLS algorithm are analyzed in Sections 5 and 6,
respectively. In Section 7, we provide some simulations to illustrate
our results. Finally, concluding remarks are stated in Section 8. Due
to space constraints, some complementary mathematical material,
including most proofs and some additional lemmas, appears in the
extended version (Sui, Marelli, Fu, & Lu, 2018), which is available
online.

2. Problem formulation

Consider a system observed by I sensing nodes. Associated to
this system, there is a deterministic vector x” = [xf Xy, ..., xIT] €
R", with Zlen,- = n, called the global state. Foranyi = 1,...,1,
node i aims to estimate the sub-vector x; € R™. There are also two
kinds of measurements. The so-called self measurements for node i

zi = Gixi + v, (1)

and the (pair-wise) joint measurements between nodes i and j

zij = Gijxi + G ix; + vjj. (2)

In the above, the matrices G, G;; and Cj; are known, and v; and
v j are independent measurement noises with known covariances
Ri > 0andR;; > 0, respectively. Note that (1) the pair (i, j) is
unordered, i.e., (i,j) = (,1); (2)zij = zj; and v;j = vj;; (3) Itis
not necessary for all nodes to have self measurements or all node
pairs to have joint measurements. In fact, joint measurements are
typically sparse for large graphs.

We assume that node i and node j could communicate if z;;
exists. Furthermore, we call node j a neighbor of node i (i.e.,j €
N;) and node i a neighbor of node j (ie, i € ;) if there is
communication between them. In view of this, communication
between nodes is always two-ways; and therefore, the associated
communication graph (which will be formally introduced later) is
always undirected.

The target of distributed WLS estimation is to compute the WLS
estimate for each x;, and its associated estimation error covariance,
using a fully distributed algorithm. The algorithm summarized in
Algorithm 1, achieves this goal. In this algorithm, at iteration N,
node i computes a local estimate x;(N) of its sub-vector of interest,
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