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a b s t r a c t

Thiswork explores the potential of relay-based control on a one-degree-of-freedomnonlinearmechanical
system, in the contexts of both sustaining and damping oscillations. For both cases we state our main
results building upon a simple reset formulation (relay feedback) and providing intuitive basic equations
from classical mechanics. With a more rigorous description following a hybrid system formalism, we
establish then the global asymptotic stability of the corresponding (compact-set) attractors through
hybrid Lyapunov tools. The aspects of sustaining and damping oscillation are seen as complementary,
because they reduce to a suitable mirroring of the reset surface. Finally, we discuss two applications of
our results to the case of a hopping mass and an automotive suspension.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Linear plants in feedback with nonlinear controllers in the form
of relayswith hysteresis have been studied since the 1950s (Hamel,
1950; Tsypkin & Herschel, 1958) (and also Tsypkin, 1984) thanks
to the favorable features (Atherton, 1996) of the power amplifiers
implementing the relays. More generally, at that time it has been
recognized with the pioneering work of Clegg (1958) that reset
actions in control systems may improve upon the potential of
linear designs (this fact was rigorously proven only recently in
Beker, Hollot, & Chait, 2001). Follow-up research on reset control
comprises the introduction of the concept of First Order Reset
Element (FORE) by Horowitz and Rosenbaum (1975), whose use in
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control systems design in subsequent papers is well summarized
in Beker et al. (2001), Beker, Hollot, Chait, and Han (2004), Chait
and Hollot (2002) and references therein. In recent years, a revived
interest in the field of FORE-based reset control emerged from the
availability of new theoretical tools for the analysis of nonlinear
hybrid systems (Goebel, Sanfelice, & Teel, 2009, 2012), which mo-
tivated more recent works well represented by Baños and Barreiro
(2011), Fichera, Prieur, Tarbouriech, and Zaccarian (2016), Satoh
(2015) and references therein.

Paralleling the abovementioned research strand, several works
such as Åström (1995) (see also Levine, 2010, §18.1.8) have testi-
fied the potential of reset control for sustaining oscillations, which
then extends quite naturally to the problem of generating hybrid
limit cycles via hybrid feedback for legged locomotion (Lakatos,
Seidel, Friedl, & Albu-Schäffer, 2015; Leach, Gunther, Maheshwari,
& Iida, 2014; Reis & Iida, 2014; Yu & Iida, 2014) and for the close
setting of juggling systems (Sanfelice, Teel, & Sepulchre, 2007).
The potential of applying hybrid dynamical systems techniques
in the context of legged locomotion is pointed out in Grizzle,
Chevallereau, Sinnet, and Ames (2014), and addressed in technical
terms in Teel, Goebel, Morris, Ames, and Grizzle (2013). More
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closely related to this work, the hoppingmass is the first milestone
in legged locomotion for robots, as witnessed by the impact of the
seminal work (Raibert, 1986) (see also the more recent Sayyad,
Seth, & Seshu, 2007 and references therein). On a parallel thread,
it must be recognized that relay-based feedback has proven to
be effective also in damping oscillations, which may find appli-
cations not only in neuroscience (Montaseri, Javad Yazdanpanah,
Pikovsky, & Rosenblum, 2013) but also in the context of semi-
active suspensions in the automotive field, as one may appreciate
from the survey works in Poussot-Vassal, Spelta, Sename, Savaresi,
and Dugard (2012, Section 4) and Savaresi, Poussot-Vassal, Spelta,
Sename, and Dugard (2010, Chapter 6).

Motivated by the above observations, in this paper we apply a
reset control paradigm to a nonlinear mechanical system in order
to sustain oscillations and, in a complementaryway, to damp them
(in the linear case, one of our results relates to Åström, 1995).
Furthermore, in the same spirit of Full and Koditschek (1999)
and Ghigliazza, Altendorfer, Holmes, and Koditschek (2005) (or
Holmes, Full, Koditschek, & Guckenheimer, 2006 for a broader
approach encompassing neurobiology and biomechanics), we use
minimal order mechanical systems to provide a fundamental ex-
planation to the phenomena of reset-sustained and reset-damped
oscillations. Finally, our work is motivated by some newly devised
actuators (Leach et al., 2014) for hopping locomotion (Reis & Iida,
2014; Yu & Iida, 2014), whose very fast action resembles the intro-
duction of a ‘‘kick’’ of energy to the mechanical system and can be
modeled by a controller reset (an alternative approach close to the
nature of thisworkwould be Sanfelice & Teel (2011)). Similar types
of actuation are used in Batts, Kim, and Yamane (2016), Lakatos et
al. (2015) and in variable impedance actuators (Vanderborght et
al., 2013).

In comparison to Baños, Dormido, and Barreiro (2011), Bar-
reiro, Baños, Dormido, and González-Prieto (2014) and Lou, Li,
and Sanfelice (2015a, b, 2017), here we consider sustaining and
damping oscillations (in a mechanical system) as complementary.
The nature of the approach in Lou et al. (2015a, b, 2017) is close
to our approach for the case of sustained oscillations, although
we do not require any a priori knowledge about the existence of
a hybrid periodic solution (as, for instance, in Lou et al., 2015a,
Assumption 4.5, item 4)). In Baños et al. (2011) and Barreiro et
al. (2014), limit cycles are an undesired dynamics arising when
stabilizing through linear resets the origin of a linear system; Bar-
reiro et al. (2014) rely on the matrix exponential for the Poincaré
map, and Baños et al. (2011) utilize the approximate method of
the describing function (Khalil, 2002, Section 7.2). Our underlying
system is instead a nonlinear (one-degree-of-freedom)mechanical
system; our approach is based on Poincaré map and Lyapunov
analysis.

As main contributions, this work focuses on exploring relay-
based laws to sustain and damp oscillations for one-degree-of-
freedom nonlinear mechanical systems. The analysis is based on
hybrid dynamical systems tools (Goebel et al., 2009, 2012), adapted
in particular to the study of periodic orbits. The resulting frame-
work is justified and illustrated through two relevant engineering
applications. This work extends Bisoffi, Forni, Da Lio, and Zaccarian
(2016), whose problem setting originates from Lakatos and Albu-
Schäffer (2014), by consideringmore general nonlinearmechanical
systems: the study of sustained oscillations is more detailed and
the study of reset-damped oscillations and applications is new.
The paper is structured as follows. Sections 2 and 3 present reset-
sustained and reset-damped oscillations, respectively. Sections 2.1
and 3.1 provide the main results of the paper and Sections 2.2
and 3.2 discuss technical details and proofs. Our proofs are based
on Goebel et al. (2009, 2012) and take inspiration from classical
Poincaré analysis (Hirsch & Smale, 1974). Applications are illus-
trated in Section 4with a simplemodel of a hopping robot andwith

Fig. 1. Curve s ↦→ γ (s) in red and related sets Ci and Di . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

a (semi-active) suspension from the automotive field, respectively.

Notation. The nonnegative reals and integers are denoted by R≥0
and Z≥0, respectively. The domain of a function f is denoted by
dom f and in the specific case of a solution φ to a hybrid dynamical
system, domφ denotes a hybrid time domain as in Goebel et al.
(2012, Definition 2.3). For a set S, S denotes its closure. The closed
unit ball is denoted by B.

2. Reset-sustained oscillations

2.1. General theory

Consider the one-degree-of-freedomnonlinearmechanical sys-
tem

mÿ + c(y, ẏ)ẏ +
∂U
∂y

(y, u) = 0 (1a)

where y is the position, ẏ is the velocity, ÿ is the acceleration, m is
the mass, c(y, ẏ) is the nonlinear damping coefficient, and U(y, u)
is the nonlinear potential whose dependence on the position y is
modulated by u, which we use as a control input to the system.
We show that system (1a) can be controlled into steady state
oscillations by simple, piecewise constant, reset laws.

Based on Fig. 1, consider the curve

γ (s) :=

{(y2, s − y2) s ≤ y2
(s, 0) y2 ≤ s ≤ y1
(y1, s − y1) s ≥ y1

(1b)

that divides the plane (y, ẏ) into the two regions

C1 := {(y, ẏ) : (ẏ < 0, y2 < y ≤ y1) or y > y1} (1c)
C2 := {(y, ẏ) : (ẏ > 0, y2 ≤ y < y1) or y < y2}, (1d)

where y1 > y2 are two constant values. We pursue minimal
actuation complexity, so we restrict ourselves to a binary control
action u depending on the state (y, ẏ) as

u =

{
u1 if (y, ẏ) ∈ C1
u2 if (y, ẏ) ∈ C2,

(1e)

where u1 and u2 are two constant values. At the same time, we
also keep a minimal sensing complexity because the resets are
triggered when the state (y, ẏ) is detected to cross the branches

D1 := {γ (s) : s ≥ y1} (1f)
D2 := {γ (s) : s ≤ y2}. (1g)

Models similar to (1) can be found in Lakatos and Albu-Schäffer
(2014), Lakatos et al. (2015) and Yu and Iida (2014)wherein the use
of such models is extensively motivated in the context of robotic
applications. Indeed, we further discuss the practical relevance of
this model in Section 4. Solutions to (1) are well defined in view
of their hybrid definition that we postpone to Section 2.2. We
consider then the following standard concepts.
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