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a b s t r a c t

We consider linear–quadratic mean field Stackelberg differential games with the adapted open-loop
information structure of the leader. There are one leader and N followers, where N is arbitrarily large.
The leader holds a dominating position in the game in the sense that the leader first chooses and then
announces the optimal strategy to which the N followers respond by playing a Nash game, i.e., choosing
their optimal strategies noncooperatively and simultaneously based on the leader’s observed strategy. In
our setting, the followers are coupled with each other through the mean field term included in their cost
functions, and are strongly influenced by the leader’s open-loop strategy included in their cost functions
and dynamics. From the leader’s perspective, he is coupled with the N followers through the mean
field term included in his cost function. To circumvent the complexity brought about by the coupling
nature among the leader and the followers with large N , which makes the use of the direct approach
almost impossible, our approach in this paper is to characterize an approximated stochastic mean field
process by solving a local optimal control problem of the followers with leader’s control taken as an
exogenous stochastic process. We show that for each fixed strategy of the leader, the followers’ local
optimal decentralized strategies lead to an ϵ-Nash equilibrium. The paper then solves the leader’s local
optimal control problem, as a nonstandard constrained optimization problem, with constraints being
induced by the approximatedmean field process determined byNash followers (which also depend on the
leader’s control).We show that the local optimal decentralized controllers for the leader and the followers
constitute an (ϵ1, ϵ2)-Stackelberg–Nash equilibrium for the original game, where ϵ1 and ϵ2 both converge
to zero as N → ∞. Numerical examples are provided to illustrate the theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, games with a large number of agents have been stud-
ied extensively within the mean field game framework. In this
setting, the individual agents interact with each other through a
mean field term included in the individual cost functions and/or
controlled stochastic differential (or dynamic) equations, which
captures the average behavior of the agents. Since there is a large
number of agents, complexity issues arise from the dimension of
the state space and the heterogeneity of the agents. In such cases,
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computingNash equilibria for the corresponding gameusing direct
methods as discussed in standard texts for dynamic games, such as
Başar and Olsder (1999), may be cumbersome and complicated. To
resolve this difficulty, the mean field analysis has been introduced
to obtain the best estimate of the actual mean field behavior,
which leads to optimal decentralized strategies that are functions
of local information and constitute an ϵ-Nash equilibrium (Huang,
Caines, & Malhame, 2007; Li & Zhang, 2008). Lasry and Lions
(2007) developed independently a different approach to obtain the
mean field equilibrium, which entails solving coupled forward–
backward partial differential equationswhere the former is related
to optimal control with the Hamilton–Jacobi–Bellman equation,
and the latter is related to the mean field distribution with the
Fokker–Planck–Kolmogorov equation. Both of these approaches
are built on a platform that utilizes the fact that the impact of the
individual agents on the mean field behavior becomes negligible
when the number of agents goes to infinity.

There are various applications of mean field games. In Yin,
Mehta, Meyn, and Shanbhag (2012), the problem of a large number
of coupled oscillators has been formulated within the mean field
game framework, where the decentralized optimal strategies were
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characterized to obtain an ϵ-Nash equilibrium. The problem of
charging of a large number of Plug-in Electric Vehicles was studied
independently in Couillet, Perlaza, Tembine, and Debbah (2012)
and Ma, Callaway, and Hiskens (2013). In addition to this, there
are several application domains of mean field games; for example,
engineering, finance, economics with a large number of firms,
systems biology, etc; see Bauso, Zhang, and Papachristodoulou
(2017), Cardaliaguet and Lehalle (2017), Couillet et al. (2012), Festa
and Gottlich (2017), Firoozi and Caines (2016), Huang, Caines,
and Malhame (2003), Kizilkale and Malhame (2014), Lasry and
Lions (2007), Weintraub, Benkard, and Van Roy (2008) and Zhu,
Tembine, and Başar (2011).

The mean field game framework has been extended to various
different settings. Linear–quadraticmean field gameswere studied
in Ahuja (2016), Bardi and Priuli (2014), Bensoussan, Sung, Yam,
and Yung (2014), Huang and Li (2018), Huang et al. (2007) and Li
and Zhang (2008). Risk-sensitive and/or robust mean field games
were introduced and discussed in Moon and Başar (2014, 2017),
Tembine (2015) and Tembine, Zhu, and Başar (2014). Mean field
consensus games were studied in Nourian, Caines, Malhame, and
Huang (2013), and mean field games with Markov jump param-
eters were considered in Moon and Başar (2016) and Wang and
Zhang (2012). Mean field games were studied within the prob-
abilistic approach in Bardi and Fischer (2018) and Carmona and
Delarue (2013).

In contrast to the types of mean field games referenced above,
Huang (2010) and Nguyen and Huang (2012) considered the sit-
uation when there are one major agent and a large number of
minor agents, where each minor agent is affected by the major
agent’s Brownian motion through its state included in the minor
agent’s dynamics and cost function. This can be viewed as strong
influence of the major agent on minor agents, in view of which
unlike Carmona & Delarue (2013), Huang et al. (2007), Li & Zhang
(2008) and Moon & Başar (2017), stochastic mean field approxi-
mation was introduced. Specifically, due to the strong influence
of the leader, the approximated mean field coupling term is no
longer deterministic, but a stochastic process driven by the Brow-
nian motion of the leader. In Huang (2010), the state augmenta-
tion method was developed via the strong law of large numbers
to characterize the best stochastic mean field process when the
followers are heterogeneous with K distinct models. In Nguyen
and Huang (2012), fixed point analysis was applied to obtain
similar results as in Huang (2010) when the dynamics and costs
of the followers are parametrized within a continuum set. These
two different approaches lead to (different) decentralized optimal
strategies for the individual agents that constitute an (different)
ϵ-Nash equilibrium. The nonlinear counterpart of mean field
games with major and minor agents was studied in Bensoussan,
Chau, and Yam (2015a) and Nourian and Caines (2013). Also,
probabilistic mean field games withmajor andminor players were
studied in Carmona and Zhu (2014) and Huang, Wang, and Wu
(2016), and finite-state mean field games with major and minor
players were considered in Carmona and Wang (2016).

We should mention that mean field games with major and
minor players, as discussed above are Nash games. That is, each
agent determines his optimal strategy noncooperatively and all
simultaneously, which lead to ϵ-Nash equilibria, and there is no
hierarchy of decision making between the agents. On the other
hand, if one wants to model a certain hierarchical structure in
mean field games, the corresponding problem can be formulated
by employing the Stackelberg setting. Classical Stackelberg games
are hierarchical decision making problems, where there is a leader
with a dominant position over the follower (Von Stackelberg,
1952). The leader first announces his optimum strategy by taking
into account the rational reactions of the followers. The follower
then chooses his optimal strategy based on the leader’s strategy,

and finally the leader comes back and implements his announced
strategy, thus generating his action. When there is such a solution,
the resulting optimum strategies for the leader and the follower
form a Stackelberg equilibrium (Başar & Olsder, 1999).

Stackelberg differential and dynamic games have been studied
extensively in the literature since 1970, and detailed expositions
can be found in Başar, Bensoussan, and Sethi (2010), Başar and Ols-
der (1999), Başar and Selbuz (1979), Bensoussan, Chen, and Sethi
(2015b), Freiling, Jank, and Lee (2001), Papavassilopoulos and Cruz
(1979), Simaan and Cruz (1973), Yong (2002), and the references
therein. Stackelberg games have a wide range of applications. In a
communication network, there is a single service provider and a
(large) number of users, where the service provider sets the usage
price(s) for the Nash followers (Başar & Srikant, 2002). Moreover,
in the smart grid, the optimal demand response management can
be studied within the framework of Stackelberg games, where the
utility companies are leader, and the users are followers (Maharjan,
Zhu, Zhang, Gjessing, & Başar, 2013).

1.1. Problem statement and main contributions

In this paper, we consider mean field Stackelberg differential
games when there are one leader and a large number, say N , of
followers. The leader globally dominates over the followers for the
entire duration in the sense that before the start of the game he1
chooses and then announces his strategy to the N followers who
play a Nash game. The N number of Nash followers choose their
optimal strategies noncooperatively and simultaneously based on
the leader’s observed strategy. In this paper, the information struc-
tures for both the leader and the followers are taken to be adapted
open-loop, that is, the information structure that defines admissible
controls for the leader and the followers is the filtration generated
by each agent’s initial condition and Brownian motion (the leader,
of course, knows everything that the followers know).2 Moreover,
in this setting, the followers are coupled with each other through
the mean field term included in each follower’s cost function, and
is strongly influenced by the leader’s strategy included in each
agent’s cost function and dynamics. From the leader’s perspective,
he is coupled with the N followers through the mean field term
included in his cost function. We also consider the heterogeneous
case of the followers with K distinct models, that is, each follower
belongs to a finite model set K = {1, 2, . . . , K }. We note that the
classical Stackelberg (differential and dynamics) games with the
leader(s) and Nash followers without the mean field framework
were studied in Nie, Chen, and Fukushima (2006) and Simaan
and Cruz (1973), where (necessary or sufficient) conditions were
provided for characterization of the Stackelberg equilibrium.

Since there is a large number of followers, complexity issues
arise from themean field coupling term and heterogeneity of Nash
followers. In addition to this, solving the leader’s optimal control
problem becomes complicated, since it depends on a large number
of Nash followers. Therefore, computing an exact Stackelberg–
Nash solution is cumbersome and complicated. To circumvent this
difficulty, our approach in this paper is to apply the stochastic
mean field approximation to characterize the best estimate of the
actual mean field behavior.

We first consider the mean field Nash game for the N followers
given an arbitrary strategy of the leader. We solve a local optimal
control problem of the followers with leader’s control taken as an
exogenous stochastic process. We characterize the best estimate

1 In this paper, we use a ‘‘he’’ when referring to a specific player (the leader and
the followers). It could equally have been a ‘‘she’’.
2 The precise notion of (adapted) open-loop information structure for (stochas-

tic) Stackelberg games can be found in Başar and Olsder (1999), Bensoussan et al.
(2015b) and Yong (2002).
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