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a b s t r a c t

This paper considers the linear output regulation problem for uncertain over-actuated plants. The general
form of input redundancy considered in this work implies the existence of multiple control inputs and
state trajectories compatible with a prescribed reference for the output. On-line selection, according
to certain performance criteria, of the most suitable of these inputs-state trajectories leads to a linear
output regulation problem with dynamic redundancy allocation. We present a solution that augments the
well known internal model control scheme with two additional dynamical systems. The first one, named
annihilator, parametrizes the inputs and the corresponding state trajectories that are invisible from the
output. The second one, named redundancy allocator, dynamically selects the best solution according to
a predefined performance criterion. We derive explicit solutions for the performance criterion equal to
relaxed 1, 2, and ∞- norms of the plant input. This set-up is a particular case of the dynamic redundancy
allocation problem named dynamic input allocation. The proposed solutions can be implemented in an
error feedback formand are especially suitable for optimizing sparsity, power and amplitude of the control
input. Finally, structural stability, robustness and existence of a unique steady-state are proven.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Intuitively speaking a system is over-actuated when the num-
ber of control inputs is larger than thenumber of regulated outputs.
Over-actuation naturally arises every time there aremultiple actu-
ators performing the same action and this is often the case inmany
engineering applications. The presence of more actuators than
strictly necessary could be desirable for many reasons, e.g., safety,
fault-tolerant policies, performance or consumption optimization.
Popular and well studied examples of over-actuated systems are
high performance aircraft (Bodson, 2002) and ships and under-
water vehicles (Johansen & Fossen, 2013). However many other
application fields are increasing in number, see for instance Zhou,
Canova, and Serrani (2016). A large number of actuators introduce
a certain degree of redundancy, meaning that there exists an entire
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family of input functions and possibly of state trajectories that are
compatible with a prescribed reference for the output (Cristofaro
& Galeani, 2014; Galeani, Serrani, Varano, & Zaccarian, 2015; Ser-
rani, 2012; Zaccarian, 2009), or more precisely the system does
not have a unique right inverse. This redundancy is exploited to
design a dynamic redundancy allocator whose primary objective is
to dynamically select, among all the feasible inputs, the best one
according to a certain cost function.

The setup considered in this work differs from previous studies,
notably, Galeani et al. (2015) and Serrani (2012), in several aspects.
First, we explicitly take into consideration parametric uncertain-
ties in the plant showing that the problem is structurally well
posed. Second, we derive a closed form solution for cost functions
involving different norms of the input, solving the so called dy-
namic input optimization problem for three significant cases that in-
volve sparsity, power and amplitude of the plant control signal. The
derived strategies only require the tracking error as input. Third,
we precisely formulate the dynamic allocation problemwithin the
framework of robust linear output regulation and we show that,
in all cases, a dynamic allocator can be designed that provides
global exponential stability of the closed-loop system (when the
exogenous signals are disconnected), uniform boundedness of all
trajectories, and exponential convergence to a unique steady-state
by way of a global contractivity property.
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A preliminary version of this work have been presented in Co-
cetti, Serrani, and Zaccarian (2016), but here we largely extend the
ideas and we present results and proofs in a more general and
clear setting. The improvements are essentially threefold. First, we
extend the allocation strategy for generic strongly convex objective
functions. Second, we provide explicit closed form solutions for
three different cost functions of practical interest, i.e., relaxations
of the 1, 2 and ∞ norm of the plant input, whereas in Cocetti et al.
(2016) only the 2 and∞ normswere considered. Third, we remove
the need for an additional tuning gain required in the solution
presented in Cocetti et al. (2016) and we extend the results from
semiglobal to global. These latter properties, in turn, have been
achieved via the introduction ofmild regularity assumptions on the
cost function, not required in Cocetti et al. (2016).

The paper is organized as follows: in Section 2 we present
the set-up and we formally define the dynamic allocation problem.
In Section 3 we solve the problem in a fairly general setting. In
Section 4 we specialize the findings of Section 3 into the dynamic
input allocation set up and we provide explicit design for three
specific choices of the cost function that are of practical interest,
namely relaxed 1, 2, and ∞-norm of the control input. In 5 we
present some simulations to show the effectiveness of the pro-
posed techniques. Conclusions are offered in Section 6.

Notation: Let Rn denote the set of real vectors of dimension
n; given a constant c ∈ R we write R≥c to denote the subset
[c, ∞) ⊂ R. Calligraphic symbols such as M denote sets, while
the formal script font is used to denote real vector spaces locally
isomorphic to Euclidean spaces, e.g., X . For a vector x ∈ Rn, xi
denotes the ith entry, |x|1, |x|2, |x|∞ are respectively the 1, 2, ∞
norms of x, and diag (x) ∈ Rn×n is the diagonal matrix whose
ith diagonal element is xi. Given two vectors x ∈ Rn, y ∈ Rm,
col (x, y) := [x⊤, y⊤

]
⊤

∈ Rn+m. For a matrix M ∈ Rn×m, M⊤

denotes its transpose. For square invertible matrices M ∈ Rn×n,
M−1 denotes the inverse of M and M−⊤ its inverse transpose,
M > 0 (M ≥ 0) denotes positive definiteness (semi-definiteness)
of M , spec(M) = {λ1, λ2, . . . , λn} denotes the spectrum, i.e., the
set of the eigenvalues of matrix M , finally He (M) := (M + M⊤)
is the Hermitian component of matrix M . If matrix M ∈ Rn×n is
symmetric the eigenvalues are real and can be always arranged in
algebraically non decreasing order as follows λ1(M) ≤ λ2(M) ≤

· · · ≤ λn(M). Given M ∈ Rn×m, Mij denotes the ij component of
M with i = 1, . . . , n and j = 1, . . . ,m, while M⊤

ij denotes the ij
component of M⊤ with i = 1, . . . ,m and j = 1, . . . , n. The op-
erator diag(M1,M2) ∈ Rn×n denotes the block-wise concatenation
of matrices M1 ∈ Rn1×n1 and M2 ∈ Rn2×n2 where n := n1 + n2.
Matrix In ∈ Rn×n denotes the identity matrix of order n but often
we will drop the subscript n if the dimension is clear from the
context. Given a function f (x, y), f : Rn

× Rm
→ R we use the

following notation: ∇xf (x, y) := col
(

∂ f
∂x1

(x, y), . . . , ∂ f
∂xn

(x, y)
)

∈

Rn, ∇yf (x, y) := col
(

∂ f
∂y1

(x, y), . . . , ∂ f
∂ym

(x, y)
)

∈ Rm, ∇2
yxf (x, y) :=(

∂∇xf
∂y1

(x, y), . . . , ∂∇xf
∂ym

(x, y)
)

∈ Rn×m, and ∇
2
x f (x, y) ∈ Rn×n rep-

resents the Hessian matrix with respect x. Finally the symbols
L∞, C k, (k = 0, 1, . . . ) denote respectively the set of essentially
bounded and k-times differentiable functions.

2. Problem statement

We consider a modified version of the linear robust output
regulation set up.We start by considering an uncertain plantmodel
of the form,

ẋp = Ap(µ)xp + Bp(µ)u + Pp(µ)w, (1a)
e = Cp(µ)xp + Qp(µ)w, (1b)

with state xp ∈ Xp ∼= Rnp , control input u ∈ U ∼= Rm and tracking
error e ∈ E ∼= Rp. The plant matrices Ap(µ) ∈ Rnp×np , Bp(µ) ∈

Rnp×m, Pp(µ) ∈ Rnp×s, Cp(µ) ∈ Rp×np , Qp(µ) ∈ Rp×s depend
continuously on a vector µ ∈ M, whose values are assumed to
range over a known compact set M ⊂ Rnµ containing the origin.
Without loss of generality we assume that µ = 0 corresponds to
the nominal model. We assume that the plant (1) is driven by an
exogenous signal w ∈ W ∼= Rs generated by a known exosystem of
the form,

ẇ = Sw, (2)

where the matrix S is assumed to be semi-simple and such that
spec(S) ⊂ C0. This implies that for any initial condition w(0)
the arising solution w(·) to (2) is uniformly bounded. Depending
on the context, the signal w may represent references and/or
disturbances. Stability and regulation for (1) are ensured by a given
error feedback controller of the form

ẋc = Acxc + Bce (3a)
ureg = Ccxc, (3b)

with state xc ∈ Xc ∼= Rnc and output ureg ∈ U . The classical formu-
lation of the robust linear output regulation problem is reported in
the following Problem 1.

Problem 1 (Linear Output Regulation Problem). Given the plant
model (1) with exosystem (2) find, if possible, a controller of the
form (3) such that:

(1) The closed-loop matrix[
Ap(µ) Bp(µ)Cc
BcCp(µ) Ac

]
(4)

obtained through the interconnection u = ureg is Hurwitz for
all µ ∈ M.

(2) Solutions of (1)–(3)–(2) originating fromany initial condition
(xp(0), xc(0), w(0)) ∈ Xp ×Xc ×W satisfy limt→+∞e(t) = 0,
for all µ ∈ M.

The solution of Problem 1 relies on the well known ‘‘Internal
Model Principle’’, see Francis (1977), and the following assump-
tions are necessary for its solvability.

Assumption 1 (Output Regulation Assumptions).

(1) the pairs
[
Ap(µ), Bp(µ)

]
and

[
Cp(µ), Ap(µ)

]
are respectively

stabilizable and detectable for all µ ∈ M,
(2) the non resonance condition

rank
[
Ap(µ) − λI Bp(µ)

Cp(µ) 0

]
= np + p, ∀λ ∈ spec(S)

holds for all µ ∈ M.

Assumption 1 is required for the existence of a stabilizing error-
feedback controller of the form (3) that satisfies the internal model
property and solves Problem1.Moreover sincewe are interested in
over-actuated systems, in addition to Assumption 1, following Ser-
rani (2012) and Zaccarian (2009)wemake the following character-
izing assumptions on the class of systems under investigation:

Assumption 2 (Over-actuation). System (1) is over-actuated, that
is, m > p and rank Bp(µ) ≥ p, for all µ ∈ M. For simplicity, we
also assume that rank Cp(µ) = p, for all µ ∈ M.

Assumption 3 (Nominal Right-invertibility). The triplet
[
Cp(0),

Ap(0), Bp(0)
]
is right-invertible.
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